/*
July 2006. Annie Che <chea@stat.ucla.edu>. UCLA Statistics.
Source of example data:
Mathematical Statistics and Data Analysis, John Rice, Second Edition.
Page 390, example A, determination of the laten heat of fusion of ice.
*/
package edu.ucla.stat.SOCR.analyses.example;
import java.util.HashMap;
import edu.ucla.stat.SOCR.analyses.data.Data;
import edu.ucla.stat.SOCR.analyses.result.TwoIndependentWilcoxonResult;
public class TwoIndependentWilcoxonExample {
public static void main(String args[]) {
double[] a =
{79.98, 80.04, 80.02, 80.04, 80.03, 80.03,
80.04, 79.97, 80.05, 80.03, 80.02, 80.00, 80.02};
double[] b =
{80.02, 79.94, 79.98, 79.97, 79.97, 80.03, 79.95, 79.97};
// you'll need to instantiate a data instance first.
Data data = new Data();
// then use the following line to get the result.
try {
TwoIndependentWilcoxonResult result =
(TwoIndependentWilcoxonResult)data.modelTwoIndependentWilcoxon(a,b);
if (result != null) {
// Getting the model's parameter estiamtes and statistics.
double meanX = result.getMeanX();
double meanY = result.getMeanY();
System.out.println("meanX = " + meanX);
System.out.println("meanY = " + meanY);
double rankSumSmall = result.getRankSumSmallerGroup();
double rankSumLarge = result.getRankSumLargerGroup();
System.out.println("rankSumSmall = " + rankSumSmall);
System.out.println("rankSumLarge = " + rankSumLarge);
double uStatSmall = result.getUStatSmallerGroup();
double uStatLarge = result.getUStatLargerGroup();
System.out.println("uStatSmall = " + uStatSmall);
System.out.println("uStatLarge = " + uStatLarge);
double meanU = result.getMeanU();
double varU = result.getVarianceU();
System.out.println("meanU = " + meanU);
System.out.println("varU = " + varU);
double zScore = result.getZScore();
String pValue = result.getPValue();
boolean isLargeSample = result.isLargeSample();
System.out.println("zScore = " + zScore);
System.out.println("pValue = " + pValue);
System.out.println("isLargeSample = " + isLargeSample);
}
} catch (Exception e) {
System.out.println(e);
}
}
}