SOCR EduMaterials Activities CoinfidenceIntervalExperiment

From SOCR
Revision as of 20:41, 22 October 2008 by IvoDinov (talk | contribs) (See also)
Jump to: navigation, search

Confidence Interval Experiment

Description

This experiment randomly samples from a N(μ=0, σ2=1) distribution and constructs a confidence interval for the mean (μ). Note how confidence interval widens as the confidence level increases. This is counterbalanced by the sample-size increase. Also, see the effect of the confidence level, 100(1-α)%, on the frequency of intervals missing the estimated parameter (μ=0, in this case).

Goal

To provide a simple simulation demonstrating the effects of confidence level and sample-size on the size of the constructed confidence interval, and utilizing this experiment when sampling from almost all symmetric unimodal distributions.

Experiments

Go to the SOCR Experiments and select the Confidence Interval Experiment from the drop-down list of experiments on the top left. The image below shows the initial view of this experiment:

SOCR Activities ConfidenceIntervalExperiment SubTopic Chui 051107 Fig1.jpg

The control buttons on the top allow the user when to begin and end the experiment. “Step” runs one trial, “Run” executes a number of trials depending on the settings of the list boxes below, and “Stop” ends the trials.

The sample size and number of intervals may be modified by the user’s discretion.

Notice that when alpha has a very small value, the results are also small in value and deviation. The image below shows this information:

SOCR Activities ConfidenceIntervalExperiment SubTopic Chui 051107 Fig2.jpg

See also

Another SOCR Confidence Interval Activity

Applications

The Confidence Interval Experiment may be applied to any situation regarding a population parameter associated with a probability that is generated from a random sample.


For example, adjusting a machine that is to fill cans with soda so that the mean content of the cups is approximately 8 ounces. Since it is not possible for every cup to be filled at exactly 8 ounces, setting the random variable X as the weight of the filling can be applied to this applet. The distribution of X is assumed to be of a normal distribution with an expected mean value and standard deviation.


Suppose engineers want to check for the amount of pollution in the waters of Los Angeles and discover the average amount with standard deviation from the past couple of years. By using this applet, they draw generalizations of the average amount of pollution in Los Angeles with a 95% confidence level.




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif