AP Statistics Curriculum 2007 Estim Proportion

Revision as of 15:30, 15 February 2008 by PriscillaChui (talk | contribs) ( General Advance-Placement (AP) Statistics Curriculum - Estimating a Population Proportion)
Jump to: navigation, search

General Advance-Placement (AP) Statistics Curriculum - Estimating a Population Proportion

Estimating a Population Proportion

When the sample size is large, the sampling distribution of the sample proportion \(\hat{p}\) is approximately Normal, by CLT, as the sample proportion may be presented as a sample average or Bernoulli random variables. When the sample size is small, the normal approximation may be inadequate. To accommodate this, we will modify the sample-proportion \(\hat{p}\) slightly and obtain the corrected-sample-proportion \(\tilde{p}\): \[\hat{p}={y\over n} \longrightarrow \tilde{y}={y+0.5z_{\alpha \over 2}^2 \over n+z_{\alpha \over 2}^2},\] where \(z_{\alpha \over 2}\) is the normal critical value we saw earlier.

The standard error of \(\hat{p}\) also needs a slight modification \[SE_{\hat{p}} = \sqrt{\hat{p}(1-\hat{p})\over n} \longrightarrow SE_{\tilde{p}} = \sqrt{\tilde{p}(1-\tilde{p})\over n+z_{\alpha \over 2}^2}.\]

Confidence intervals for proportions

The confidence intervals for the sample proportion \(\hat{p}\) and the corrected-sample-proportion \(\tilde{p}\) are given by \[\hat{p}\pm z_{\alpha\over 2} SE_{\hat{p}}\]

\[\tilde{p}\pm z_{\alpha\over 2} SE_{\tilde{p}}\]


Suppose a researcher is interested in studying the effect of aspirin in reducing heart attacks. He randomly recruits 500 subjects with evidence of early heart disease and has them take one aspirin daily for two years. At the end of the two years, he finds that during the study only 17 subjects had a heart attack. Calculate a 95% (\(\alpha=0.05\)) confidence interval for the true (unknown) proportion of subjects with early heart disease that have a heart attack while taking aspirin daily. Note that \(z_{\alpha \over 2} = z_{0.025}=1.96\):

\[\hat{p} = {17\over 500}=0.034\] ; \(\tilde{p} = {17+0.5z_{0.025}^2\over 500+z_{0.025}^2}== {17+1.92\over 500+3.84}=0.038\)

\[SE_{\hat{p}}= \sqrt{0.034(1-0.034)\over 500}=0.0036\]; \(SE_{\tilde{p}}= \sqrt{0.038(1-0.038)\over 500+3.84}=0.0085\)

And the corresponding confidence intervals are given by \[\hat{p}\pm 1.96 SE_{\hat{p}}=[0.026944, 0.041056]\]

\[\tilde{p}\pm 1.96 SE_{\tilde{p}}=[0.0213, 0.0547]\]

Sample-size estimation

For a given margin of error we can derive the minimum sample-size that guarantees an interval estimate within the given margin of error. The margin of error is the standard-error of the sample-proportion:

\[SE_{\tilde{p}} = \sqrt{\tilde{p}(1-\tilde{p})\over n+z_{\alpha \over 2}^2}.\]

This equation has one unknown parameter (n), which we can solve for if we are given an upper limit for the margin of error.

\[SE_{\tilde{p}} \geq \sqrt{\tilde{p}(1-\tilde{p})\over n+z_{\alpha \over 2}^2} \longrightarrow n \geq {\tilde{p}(1-\tilde{p})\over {SE_{\tilde{p}}^2} } -z_{\alpha \over 2}^2.\]


Sample-SIze Estimation

How many subjects are needed if the heart-researchers want \(SE < 0.005\) for a 95% CI, and have a guess based on previous research that \(\tilde{p}= 0.04\)? \[n \geq {0.04(1-0.04)\over 0.005^2} - 1.96^2=1533.16 \approx 1534.\]

Siblings Genders

Is the gender of a second child influenced by the gender of the first child, in families with >1 kid? Research hypothesis needs to be formulated first before collecting/looking/interpreting the data that will be used to address it. Mothers whose 1st child is a girl are more likely to have a girl, as a second child, compared to mothers with boys as 1st children. Data: 20 yrs of birth records of 1 Hospital in Auckland, New Zealand.

  Second Child
Male Female Total
First Child Male 3,202 2,776 5,978
Female 2,620 2,792 5,412
Total 5,822 5,568 11,390

Let \(p_1\)=true proportion of girls in mothers with girl as first child, \(p_2\)=true proportion of girls in mothers with boy as first child. The parameter of interest is \(p_1- p_2\).

  • Hypotheses\[H_o: p_1- p_2=0\] (skeptical reaction). \(H_1: p_1- p_2>0\) (research hypothesis).
  Second Child
Number of births Number of girls Proportion
Group 1 (Previous child was girl) \(n_1=5412\) 2792 \(\hat{p}_1=0.516\)
2 (Previous child was boy) \(n_2=5978\) 2776 \(\hat{p}_2=0.464\)
  • Test Statistics\[Z_o = {Estimate-HypothesizedValue\over SE(Estimate)} = {\hat{p}_1 - \hat{p}_2 - 0 \over SE(\hat{p}_1 - \hat{p}_2)} = {\hat{p}_1 - \hat{p}_2 - 0 \over \sqrt{{\hat{p}_1(1-\hat{p}_1)\over n_1} + {\hat{p}_2(1-\hat{p}_2)\over n_2}}} \sim N(0,1)\] and \(Z_o=5.4996\).
  • \(P_value = P(Z>Z_o)< 1.9\times 10^{-8}\). This small p-values provides extremely strong evidence to reject the null hypothesis that there are no differences between the proportions of mothers that had a girl as a second child but had either boy or girl as their first child. Hence there is strong statistical evidence implying that genders of siblings are not independent.
  • Practical significance: The practical significance of the effect (of the gender of the first child on the gender of the second child, in this case) can only be assessed using confidence intervals. A 95% \(CI (p_1- p_2) =[0.033; 0.070]\) is computed by \(p_1-p_2 \pm 1.96 SE(p_1 - p_2)\). Clearly, this is a practically neglegable effect and no reasonable person would make important prospective family decisions based on the gender of their (first) child.
SOCR EBook Dinov Hypothesis 020508 Fig6.jpg


Translate this page:

Uk flag.gif

De flag.gif

Es flag.gif

Fr flag.gif

It flag.gif

Pt flag.gif

Jp flag.gif

Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Fi flag.gif

इस भाषा में
In flag.gif

No flag.png

Kr flag.gif

Cn flag.gif

Cn flag.gif

Ru flag.gif

Nl flag.gif

Gr flag.gif

Hr flag.gif

Česká republika
Cz flag.gif

Dk flag.gif

Pl flag.png

Ro flag.png

Se flag.gif