Difference between revisions of "AP Statistics Curriculum 2007 IntroUses"

From SOCR
Jump to: navigation, search
m
(Approach)
Line 7: Line 7:
  
 
==Approach==
 
==Approach==
When presented with a problem, data and statistical inference about a phenomenon, one needs to assess critically the validity of the assumptions, accuracy of the models and correctness of the interpretation of the thesis. There are many so called paradoxes, where one can easily be convinced of an erroneous conclusion, because the underlying principles are violated (e.g., [http://en.wikipedia.org/wiki/Simpson_paradox Simpson's paradox], the [http://en.wikipedia.org/wiki/Birthday_paradox Birthday paradox], etc.) Critical evaluation of the design of the experiment, the data collection and measurements and the validity of the analysis strategy should lead to correct inference and interpretation in most cases.
+
When presented with a problem, data and statistical inference about a phenomenon, one needs to critically assess the validity of the assumptions, accuracy of the models and correctness of the interpretation of the thesis. There are many so called paradoxes, where one can easily be convinced of an erroneous conclusion, because the underlying principles are violated (e.g., [http://en.wikipedia.org/wiki/Simpson_paradox Simpson's paradox], the [http://en.wikipedia.org/wiki/Birthday_paradox Birthday paradox], etc.). Critical evaluation of the design of the experiment, data collection, measurements and validity of the analysis strategy should lead to correct inference and interpretation in most cases.
  
 
==Examples of Common Causes for Data Misinterpretation==
 
==Examples of Common Causes for Data Misinterpretation==

Revision as of 23:23, 9 February 2008

General Advance-Placement (AP) Statistics Curriculum - Uses and Abuses of Statistics

Uses and Abuses of Statistics

Statistics is the science of variation, randomness and chance. As such, statistics is different from the Newtonian sciences, where the processes being studied obey exact deterministic mathematical laws and typically can be described as systems. Because statistics provides tools for data understanding where no other science can, one should be prepared to trade this new power of knowledge with uncertainty. In general, statistical analysis, inference and simulation will not provide deterministic answers and strict (e.g., yes/no, presence/absence) responses to questions involving stochastic processes. Rather, statistics will provide quantitative inference represented as long-time probability values, confidence or prediction intervals, odds, chances, etc., which may ultimately be subjected to varying interpretations.

This possibility of multiple interpretations may be viewed by some as detriment or inconsistency. But others consider these outcomes as beautiful, scientific and elegant responses to challenging problems that are inherently stochastic. The phrase Uses and Abuses of Statistics refers to this notion that in some cases statistical results may be used as evidence to seemingly opposite theses. However, most of the time, common principles of logic allow us to disambiguate the obtained statistical inference.

Approach

When presented with a problem, data and statistical inference about a phenomenon, one needs to critically assess the validity of the assumptions, accuracy of the models and correctness of the interpretation of the thesis. There are many so called paradoxes, where one can easily be convinced of an erroneous conclusion, because the underlying principles are violated (e.g., Simpson's paradox, the Birthday paradox, etc.). Critical evaluation of the design of the experiment, data collection, measurements and validity of the analysis strategy should lead to correct inference and interpretation in most cases.

Examples of Common Causes for Data Misinterpretation

Unrepresentative Samples

These are collections of data measurement or observations that do not adequately describe the natural process or phenomenon being studied. The phrase garbage-in, garbage-out refers to this situation and implies that none of the conclusions or the inference based on such unrepresentative samples should be trusted. In general, collecting a population representative sample is a hard experimental design problem.

  • Self-selection - voluntary response samples, where the respondents, units or participants decide themselves whether to be included in the sample, survey or experiment.
  • Non-sampling errors (e.g., non-response bias) are errors in the data collection that are not due to the process of sampling or the study design.

Sampling errors

Sampling errors arise from a decision to use a sample rather than measure the entire population.

Samples of small sizes

Loaded questions in surveys or polls

Misleading Graphs

Look at the quantitative information represented in a chart or plot, not at the shape, orientation, relation or pattern represented by the graph.

  • Partial Pictures
  • Deliberate Distortions
  • Scale breaks and axes scaling

Inappropriate estimates or statistics

Erroneous population parameter estimates (intentionally or most likely unintentionally). The source of the data and the method for parameter estimation should be carefully reviewed to avoid bias and misinterpretation of data, results and to guarantee robust inference.

Computational Resources: Internet-based SOCR Tools

Examples & Hands-on Activities


References

  • TBD



Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif