SOCR Data Dinov 072108 H Index Pubs

From SOCR
Jump to: navigation, search

SOCR Data - Faculty Research Publications, Hirsch-Index and Citation Impact

Data Description

The data table below present the (total) publication counts and their corresponding citation impacts for 5 UCLA faculty (Toga, De Leeuw, Yuille, Dinov and Hansen). The Index column contains the ordered list of publications for all 5 faculty. The cell values included in a specific author-column contain the number of citations for that author for each index (i.e., for each of their publications). Note that for each author-column, these values are monotonically-decreasing. So, index i for author k and index j for author m represent completely different publications.

Sources

Data Interpretation

These data are not intended to compare, rank or evaluate any of the UCLA faculty included (or not included) in this table. The data are provided simply for the purpose of demonstrating various SOCR tools, applets, resources and to supplement existent learning activities (e.g., EBook). You can see the H-indexes and more graphs of the publications and impact for each of these faculty here: Toga, De Leeuw, Yuille, Dinov and Hansen, as of June 2008.

Probability of faculty promotion

Research publication play an important component of faculty performance evaluation and promotion. The formula used in sciences (statistics, biostatistics, biomath, etc.) for estimating the probability of faculty promotion (from assistant to associate, or from associate to full professor) is described below.

  • See this video
  • Log-odds-ratio: $$ \ln\left ( \frac{P(promotion=Yes)}{P(Promotion=No)}\right ) = intercept (-1.0, for\ assistant2associate, -3.0, for\ assocaite2full)$$

$$ + 0.01*(\# articles) + 0.01*(Courses\ taught)$$ $$-0.05*(student\ ratings, 0-100\% excellent) - 0.05*(refereed\ papers/year)$$ $$+ 1.0*(faculty\ service, 0-100\%) $$ $$-1.0*(institutional-correction-factor, 0 (NoMansU) to 1(Harvard), UMich=0.9).$$

  • Example: $Log-odds-ratio = -3 + 0.01*(100) + 0.01*(10) -0.05*(20) - 0.05*(5) + 1.0*(10) -1.0*(0.9) = 5.95$. Thus, the odds of Promotion is $61:1$.
  • Faculty scholarship also includes gransmanship. Grant PIship may be less common for statisticians, mathematicians (and other basic science disciplines) compared to health, biological, social, and engineering faculty. Many applied statisticians have portfolios of grants as core directors, investigators, biostatisticians, etc.
  • Scholarly productivity is also important. Funded grants are enablers or accelerators of scholarship, certainly not as products of research. Scientific productivity includes specific outputs of one’s work that fill a niche, openly share ideas, provide software tools, learning modules, instructional resources, knowledge or services promoting the growth of the entire community, impact lives, enhance human experiences, or improve ambient environments.

Data Table

Index Toga De_Leeuw Yuille Dinov Hansen
1 413 843 1055 65 712
2 352 301 280 54 216
3 327 292 250 46 137
4 315 174 200 45 66
5 289 135 161 42 30
6 276 134 132 33 27
7 259 92 125 32 25
8 256 91 97 26 20
9 236 86 75 24 19
10 203 85 73 17 17
11 189 79 64 15 14
12 181 76 62 13 10
13 180 73 61 11 9
14 167 70 59 10 9
15 166 70 57 9 8
16 166 67 48 9 7
17 161 63 37 8 7
18 151 60 34 7 7
19 150 60 30 5 6
20 147 58 29 5 6
21 146 58 23 5 6
22 124 56 23 4 5
23 113 54 22 4 5
24 110 53 19 4 5
25 108 51 19 4 4
26 105 50 18 4 3
27 99 49 16 4 3
28 98 49 14 4 3
29 88 49 13 4 3
30 88 46 12 4 3
31 83 45 11 3 3
32 82 45 11 3 3
33 82 45 8 3 3
34 81 42 8 3 2
35 80 41 7 2 2
36 78 40 7 2 2
37 73 40 7 2 1
38 71 39 7 2 1
39 70 38 6 2 1
40 68 37 6 2 1
41 66 37 6 2 1
42 65 37 5 2 1
43 65 36 5 2 1
44 62 35 5 2 1
45 62 35 5 2 1
46 61 35 5 2 1
47 60 35 5 2 1
48 60 33 4 2 1
49 60 33 4 1 1
50 58 30 4 1 1
51 57 30 4 1 1
52 56 29 3 1 1
53 54 28 3 1 0
54 54 28 2 1 0
55 54 27 2 1 0
56 54 27 2 1 0
57 53 27 2 1 0
58 52 27 2 1 0
59 51 27 2 1 0
60 49 24 1 1 0
61 49 24 1 1 0
62 48 24 1 1 0
63 46 23 1 1 0
64 46 23 1 1 0
65 46 22 1 0 0
66 45 22 1 0 0
67 45 22 1 0 0
68 45 22 0 0 0
69 45 21 0 0 0
70 44 21 0 0 0
71 42 21 0 0 0
72 42 20 0 0 0
73 42 20 0 0 0
74 42 20 0 0 0
75 41 20 0 0 0
76 40 19 0 0 0
77 40 18 0 0 0
78 40 18 0 0 0
79 40 18 0 0 0
80 40 18 0 0 0
81 39 17 0 0 0
82 39 17 0 0 0
83 38 16 0 0 0
84 38 16 0 0 0
85 38 16 0 0 0
86 37 16 0 0 0
87 37 16 0 0 0
88 37 16 0 0 0
89 37 16 0 0 0
90 37 16 0 0 0
91 37 16 0 0 0
92 35 15 0 0 0
93 35 15 0 0 0
94 35 15 0 0 0
95 34 15 0 0 0
96 33 15 0 0 0
97 33 15 0 0 0
98 33 15 0 0 0
99 33 15 0 0 0
100 33 15 0 0 0
101 32 14 0 0 0
102 31 14 0 0 0
103 31 14 0 0 0
104 30 14 0 0 0
105 30 14 0 0 0
106 30 14 0 0 0
107 29 14 0 0 0
108 28 13 0 0 0
109 28 13 0 0 0
110 28 13 0 0 0
111 28 13 0 0 0
112 27 13 0 0 0
113 27 13 0 0 0
114 27 13 0 0 0
115 27 13 0 0 0
116 26 13 0 0 0
117 26 12 0 0 0
118 26 12 0 0 0
119 26 12 0 0 0
120 25 12 0 0 0
121 25 12 0 0 0
122 25 11 0 0 0
123 25 11 0 0 0
124 25 11 0 0 0
125 24 10 0 0 0
126 24 10 0 0 0
127 24 10 0 0 0
128 24 10 0 0 0
129 23 10 0 0 0
130 23 9 0 0 0
131 23 9 0 0 0
132 22 9 0 0 0
133 22 9 0 0 0
134 22 9 0 0 0
135 22 9 0 0 0
136 21 9 0 0 0
137 21 9 0 0 0
138 21 8 0 0 0
139 21 8 0 0 0
140 21 8 0 0 0
141 20 8 0 0 0
142 20 8 0 0 0
143 19 8 0 0 0
144 19 8 0 0 0
145 19 8 0 0 0
146 19 8 0 0 0
147 19 8 0 0 0
148 18 8 0 0 0
149 18 8 0 0 0
150 18 7 0 0 0
151 18 7 0 0 0
152 18 7 0 0 0
153 18 7 0 0 0
154 18 7 0 0 0
155 17 7 0 0 0
156 17 6 0 0 0
157 17 6 0 0 0
158 17 6 0 0 0
159 17 6 0 0 0
160 17 6 0 0 0
161 17 6 0 0 0
162 17 5 0 0 0
163 17 5 0 0 0
164 16 5 0 0 0
165 16 5 0 0 0
166 16 5 0 0 0
167 16 5 0 0 0
168 16 5 0 0 0
169 15 5 0 0 0
170 15 5 0 0 0
171 15 5 0 0 0
172 15 5 0 0 0
173 15 5 0 0 0
174 14 4 0 0 0
175 14 4 0 0 0
176 14 4 0 0 0
177 14 4 0 0 0
178 14 4 0 0 0
179 14 4 0 0 0
180 13 4 0 0 0
181 13 4 0 0 0
182 13 4 0 0 0
183 13 4 0 0 0
184 13 4 0 0 0
185 13 4 0 0 0
186 13 4 0 0 0
187 13 4 0 0 0
188 13 4 0 0 0
189 13 3 0 0 0
190 12 3 0 0 0
191 12 3 0 0 0
192 12 3 0 0 0
193 12 3 0 0 0
194 12 3 0 0 0
195 12 3 0 0 0
196 11 3 0 0 0
197 11 3 0 0 0
198 11 3 0 0 0
199 11 3 0 0 0
200 11 3 0 0 0
201 11 2 0 0 0
202 11 2 0 0 0
203 11 2 0 0 0
204 11 2 0 0 0
205 11 2 0 0 0
206 11 2 0 0 0
207 10 2 0 0 0
208 10 2 0 0 0
209 10 2 0 0 0
210 10 2 0 0 0
211 10 2 0 0 0
212 10 2 0 0 0
213 10 2 0 0 0
214 10 2 0 0 0
215 10 2 0 0 0
216 10 2 0 0 0
217 10 2 0 0 0
218 10 2 0 0 0
219 10 2 0 0 0
220 10 2 0 0 0
221 10 2 0 0 0
222 9 2 0 0 0
223 9 2 0 0 0
224 9 2 0 0 0
225 9 1 0 0 0
226 9 1 0 0 0
227 9 1 0 0 0
228 9 1 0 0 0
229 9 1 0 0 0
230 9 1 0 0 0
231 9 1 0 0 0
232 9 1 0 0 0
233 9 1 0 0 0
234 9 1 0 0 0
235 9 1 0 0 0
236 9 1 0 0 0
237 8 1 0 0 0
238 8 1 0 0 0
239 8 1 0 0 0
240 8 1 0 0 0
241 8 1 0 0 0
242 8 1 0 0 0
243 8 1 0 0 0
244 8 1 0 0 0
245 8 1 0 0 0
246 8 1 0 0 0
247 8 0 0 0 0
248 8 0 0 0 0
249 8 0 0 0 0
250 7 0 0 0 0
251 7 0 0 0 0
252 7 0 0 0 0
253 7 0 0 0 0
254 7 0 0 0 0
255 7 0 0 0 0
256 7 0 0 0 0
257 7 0 0 0 0
258 7 0 0 0 0
259 7 0 0 0 0
260 7 0 0 0 0
261 7 0 0 0 0
262 7 0 0 0 0
263 6 0 0 0 0
264 6 0 0 0 0
265 6 0 0 0 0
266 6 0 0 0 0
267 6 0 0 0 0
268 6 0 0 0 0
269 6 0 0 0 0
270 6 0 0 0 0
271 6 0 0 0 0
272 6 0 0 0 0
273 6 0 0 0 0
274 6 0 0 0 0
275 6 0 0 0 0
276 6 0 0 0 0
277 6 0 0 0 0
278 6 0 0 0 0
279 5 0 0 0 0
280 5 0 0 0 0
281 5 0 0 0 0
282 5 0 0 0 0
283 5 0 0 0 0
284 5 0 0 0 0
285 5 0 0 0 0
286 5 0 0 0 0
287 5 0 0 0 0
288 5 0 0 0 0
289 5 0 0 0 0
290 5 0 0 0 0
291 5 0 0 0 0
292 5 0 0 0 0
293 5 0 0 0 0
294 5 0 0 0 0
295 5 0 0 0 0
296 4 0 0 0 0
297 4 0 0 0 0
298 4 0 0 0 0
299 4 0 0 0 0
300 4 0 0 0 0
301 4 0 0 0 0
302 4 0 0 0 0
303 4 0 0 0 0
304 4 0 0 0 0
305 4 0 0 0 0
306 4 0 0 0 0
307 4 0 0 0 0
308 4 0 0 0 0
309 4 0 0 0 0
310 4 0 0 0 0
311 4 0 0 0 0
312 4 0 0 0 0
313 4 0 0 0 0
314 4 0 0 0 0
315 4 0 0 0 0
316 4 0 0 0 0
317 4 0 0 0 0
318 4 0 0 0 0
319 4 0 0 0 0
320 4 0 0 0 0
321 4 0 0 0 0
322 4 0 0 0 0
323 4 0 0 0 0
324 4 0 0 0 0
325 4 0 0 0 0
326 4 0 0 0 0
327 4 0 0 0 0
328 4 0 0 0 0
329 4 0 0 0 0
330 4 0 0 0 0
331 4 0 0 0 0
332 4 0 0 0 0
333 4 0 0 0 0
334 4 0 0 0 0
335 4 0 0 0 0
336 4 0 0 0 0
337 3 0 0 0 0
338 3 0 0 0 0
339 3 0 0 0 0
340 3 0 0 0 0
341 3 0 0 0 0
342 3 0 0 0 0
343 3 0 0 0 0
344 3 0 0 0 0
345 3 0 0 0 0
346 3 0 0 0 0
347 3 0 0 0 0
348 3 0 0 0 0
349 3 0 0 0 0
350 3 0 0 0 0
351 3 0 0 0 0
352 3 0 0 0 0
353 3 0 0 0 0
354 3 0 0 0 0
355 3 0 0 0 0
356 3 0 0 0 0
357 3 0 0 0 0
358 3 0 0 0 0
359 3 0 0 0 0
360 3 0 0 0 0
361 3 0 0 0 0
362 3 0 0 0 0
363 3 0 0 0 0
364 3 0 0 0 0
365 3 0 0 0 0
366 3 0 0 0 0
367 3 0 0 0 0
368 3 0 0 0 0
369 2 0 0 0 0
370 2 0 0 0 0
371 2 0 0 0 0
372 2 0 0 0 0
373 2 0 0 0 0
374 2 0 0 0 0
375 2 0 0 0 0
376 2 0 0 0 0
377 2 0 0 0 0
378 2 0 0 0 0
379 2 0 0 0 0
380 2 0 0 0 0
381 2 0 0 0 0
382 2 0 0 0 0
383 2 0 0 0 0
384 2 0 0 0 0
385 2 0 0 0 0
386 2 0 0 0 0
387 2 0 0 0 0
388 2 0 0 0 0
389 2 0 0 0 0
390 2 0 0 0 0
391 2 0 0 0 0
392 2 0 0 0 0
393 2 0 0 0 0
394 2 0 0 0 0
395 2 0 0 0 0
396 2 0 0 0 0
397 2 0 0 0 0
398 2 0 0 0 0
399 2 0 0 0 0
400 2 0 0 0 0
401 2 0 0 0 0
402 2 0 0 0 0
403 2 0 0 0 0
404 2 0 0 0 0
405 2 0 0 0 0
406 2 0 0 0 0
407 2 0 0 0 0
408 2 0 0 0 0
409 2 0 0 0 0
410 2 0 0 0 0
411 2 0 0 0 0
412 2 0 0 0 0
413 2 0 0 0 0
414 2 0 0 0 0
415 2 0 0 0 0
416 2 0 0 0 0
417 2 0 0 0 0
418 2 0 0 0 0
419 2 0 0 0 0
420 2 0 0 0 0
421 2 0 0 0 0
422 2 0 0 0 0
423 2 0 0 0 0
424 2 0 0 0 0
425 2 0 0 0 0
426 2 0 0 0 0
427 2 0 0 0 0
428 2 0 0 0 0
429 2 0 0 0 0
430 2 0 0 0 0
431 2 0 0 0 0
432 2 0 0 0 0
433 2 0 0 0 0
434 2 0 0 0 0
435 2 0 0 0 0
436 2 0 0 0 0
437 2 0 0 0 0
438 2 0 0 0 0
439 2 0 0 0 0
440 2 0 0 0 0
441 2 0 0 0 0
442 2 0 0 0 0
443 2 0 0 0 0
444 2 0 0 0 0
445 2 0 0 0 0
446 2 0 0 0 0
447 2 0 0 0 0
448 2 0 0 0 0
449 2 0 0 0 0
450 2 0 0 0 0
451 2 0 0 0 0
452 2 0 0 0 0
453 2 0 0 0 0
454 2 0 0 0 0
455 2 0 0 0 0
456 2 0 0 0 0
457 2 0 0 0 0
458 2 0 0 0 0
459 2 0 0 0 0
460 2 0 0 0 0
461 2 0 0 0 0
462 2 0 0 0 0
463 2 0 0 0 0
464 1 0 0 0 0
465 1 0 0 0 0
466 1 0 0 0 0
467 1 0 0 0 0
468 1 0 0 0 0
469 1 0 0 0 0
470 1 0 0 0 0
471 1 0 0 0 0
472 1 0 0 0 0
473 1 0 0 0 0
474 1 0 0 0 0
475 1 0 0 0 0
476 1 0 0 0 0
477 1 0 0 0 0
478 1 0 0 0 0
479 1 0 0 0 0
480 1 0 0 0 0
481 1 0 0 0 0
482 1 0 0 0 0
483 1 0 0 0 0
484 1 0 0 0 0
485 1 0 0 0 0
486 1 0 0 0 0
487 1 0 0 0 0
488 1 0 0 0 0
489 1 0 0 0 0
490 1 0 0 0 0
491 1 0 0 0 0
492 1 0 0 0 0
493 1 0 0 0 0
494 1 0 0 0 0
495 1 0 0 0 0
496 1 0 0 0 0
497 1 0 0 0 0
498 1 0 0 0 0

Models, Graphs and Plots

The plots below demonstrate fitting Beta-distribution models to each of the number-of-citations included in the author-columns above. These model-fits and graphs are produced by SOCR Modeler, but one may also use SOCR Charts for similar plots. The insert images within each graph show the best fit for the Beta-distribution parameters.

SOCR Data Toga BetaModelFit.jpg
SOCR Data DeLeeuw BetaModelFit.jpg
SOCR Data Yuille BetaModelFit.jpg
SOCR Data Dinov BetaModelFit.jpg
SOCR Data Hansen BetaModelFit.jpg



Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif