SOCR HTML5 PowerCalculatorProject

From SOCR
Jump to: navigation, search

SOCR Project - SOCR HTML5 Statistical Power Calculator Project

Background

Error creating thumbnail: File missing
SOCR Power Calculator Web-app

...

Project goals

The goal of this project is to redesign the SOCR Java-based Power_Analysis_for_Normal_Distribution applet using only HTML5, CSS3, AJAX/JSON, and JavaScript, and in the process introduce some useful and powerful expansions of this web-app.

Project specification

The HTML5/JavaScript implementation of the new SOCR Power Calculator Web-App es expected to lower device, software and statistical-expertise barriers for all users. The following list of designs and analysis are expected to be included in the new SOCR Power Web-app, according to the power calculations included in the provided references.

The basic classification of all power/sample analysis calculations depends on:

  • Parameters: Means, Proportions, Survival, Agreement, or Regression
  • Design/Goals: One, Two, or more groups
  • Type of analysis: Test, Confidence Interval, or Equivalence

One-sample t test

Paired t test for difference in means: Power, sample size, or effect size are computed using central and non-central t distribution.

Paired t test for equivalence of means

Power, sample size, or effect size are computed using central and non-central t distribution.

Univariate one-way repeated measures analysis of variance

One-way repeated measures contrast - Power, sample size, or effect size are computed using central and non-central F.

  • Dixon, W.J., Massey, F.J. (1983) Introduction to Statistical Analysis. McGraw-Hill. Chapter 14.
  • Overall, J.E., Doyle, S.R. (1994) Estimating Sample Sizes for Repeated Measures Designs, Controlled

Clinical Trials 15:100-123.

Univariate one-way repeated measures analysis of variance

Confidence interval for mean based on z (n large)

  • Confidence interval for difference in paired means (n large)
  • Confidence interval for repeated measures contrast
  • Dixon, W.J., Massey, F.J. (1983) Introduction to Statistical Analysis. 4th Edition. McGraw-Hill. Pages 80-85.
  • Overall, J.E., Doyle, S.R. (1994) Estimating Sample Sizes for Repeated Measures Designs, Controlled Clinical Trials 15:100-123.

Confidence interval for mean based on t (with coverage probability)

  • Confidence interval for difference in paired means (coverage probability)
  • Kupper, L.L. and Hafner, K.B. (1989) How appropriate are popular sample size formulas? The American Statistician 43:101-105.
  • Hahn GJ, Meeker WQ (1991) Statistical Intervals. A guide for practitioners. John Wiley & Sons, Inc. New York.

One group t-test that a mean equals user-specified value in finite population

  • Paired t-test of mean difference equal to zero in finite population
  • Confidence interval for mean based on z (n large) adjusted for finite population
  • Confidence interval for mean based on t (with coverage probability) finite population
  • Confidence interval for difference in paired means based on z (n large) adjusted for finite population
  • Confidence interval for difference in paired means based on t (with coverage probability) finite population
  • Cochran, G. (1977) Sampling Techniques 3rd Edition. John Wiley & Sons Inc. New York, pages 23-28.

Two-sample t-test: Equivalence of two means

  • Dixon, W.J., Massey, F.J. (1983) Introduction to Statistical Analysis. McGraw-Hill.
  • O’Brien, R.G., Muller, K.E. (1993) “Unified Power Analysis for t-tests through Multivariate Hypotheses”, in Edwards, L.K. (Ed.), Applied Analysis of Variance in Behavioral Science, Marcel Dekker, New York. Chapter 8 (pp 297-344).

Two group t-test for fold change assuming log-normal distribution

  • Diletti, E., Hauschke D., Steinijans, V.W. "Sample size determination for bioequivalence assessment by means of confidence intervals" Int. Journal of Clinical Pharmacology 29(1991) p. 7.

Two group t-test of equal fold change with fold change threshold

  • Diletti, E., Hauschke D., Steinijans, V.W. "Sample size determination for bioequivalence assessment by means of confidence intervals" Int. Journal of Clinical Pharmacology 29(1991), p. 7.

Two group Satterthwaite t-test of equal means (unequal variances)

  • Moser, B.K., Stevens, G.R., Watts, C.L. "The two-sample t test versus Satterthwaite’s approximate F test" Commun. Statist.-Theory Meth. 18(1989) pp. 3963-3975.

====Two one-sided equivalence tests (TOST) for two-group design

  • Chow, S.C, Liu, J.P. Design and Analysis of Bioavailability and Bioequivalence Studies, Marcel Dekker, Inc. (1992)
  • Schuirmann DJ (1987) A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability, J. Pharmacokinet Biopharm 15:657-680.
  • Phillips KE (1990) Power of the two one-sided tests procedure in bioequivalence, J. Pharmacokinet Biopharm 18:137-143.
  • Owen DB (1965) A special case of a bivariate non-central t distribution. Biometrika 52:437- 446.

Ratio of means for crossover design (original scale)

  • Hauschke D, Kieser M, Diletti E, Burke M (1999) Sample size determination for proving equivalence based on the ratio of two means for normally distributed data. Statistics in Medicine 18: 93-105.

Wilcoxon (Mann-Whitney) rank-sum test that P(X<Y) = .5 (continuous outcome)

  • Noether GE (1987) Sample size determination for some common nonparametric statistics. J. Am Stat. Assn 82:645-647.

Wilcoxon (Mann-Whitney) rank-sum test that P(X<Y) = .5 (ordered categories)

  • Kolassa J (1995) A comparison of size and power calculations for the Wilcoxon statistic for ordered categorical data. Statistics in Medicine 14: 1577-1581.

Two-group univariate repeated measures analysis of variance

  • Muller, KE, Barton CN (1989) Approximate Power for Repeated-Measures ANOVA lacking Sphericity. Journal of the American Statistical Association 84:549-555.

t-test (ANOVA) for difference of means in 2 x 2 crossover design

  • Senn, Stephen. Cross-over Trials in Clinical Research, Wiley (2002) Page 285.

Confidence interval for difference of two means (N large)

  • Confidence interval width for one-way contrast
  • Dixon, W.J., Massey, F.J. (1983) Introduction to Statistical Analysis. 4th Edition. McGraw-Hill. Pages 80-85 and 130-131.
  • Confidence interval for difference of two means (coverage probability)
  • Kupper, L.L. and Hafner, K.B. (1989) How appropriate are popular sample size formulas? The American Statistician, 43:101-105.

One-way analysis of variance

  • Single one-way contrast
  • O’Brien, R.G., Muller, K.E. (1993) “Unified Power Analysis for t-tests through Multivariate Hypotheses”, in Edwards, L.K. Appendix — 7-9, (Ed.), Applied Analysis of Variance in Behavioral Science, Marcel Dekker, New York. Pages 297-344.

...


Exemplary HTML5 tools that can be employed

See also





Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif