Difference between revisions of "SOCR EduMaterials AnalysisActivities ANOVA 2"

From SOCR
Jump to: navigation, search
(Examples)
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
==[[SOCR_EduMaterials_AnalysesActivities | SOCR Analyses]] Example on Two-Way Analysis of Variance==
 
==[[SOCR_EduMaterials_AnalysesActivities | SOCR Analyses]] Example on Two-Way Analysis of Variance==
  
== Background==
+
=== Background===
2-Way Analysis of Variance (ANOVA) is a statistical technique for analyzing study designs with one numerical outcome (response/dependent) variable and two categorical explanatory (predictor/independent) variables. For instance, in a completely randomized design we want to compare the response/outcome of a test by various subject-demographics (e.g., age, gender, disease severity, etc.) Subjects are grouped by one demographic-factor and then randomly assigned one treatment-factor (hence two-way!)
+
[[AP_Statistics_Curriculum_2007_ANOVA_2Way | The 2-Way Analysis of Variance (ANOVA)]] is a statistical technique for analyzing study designs with one numerical outcome (response/dependent) variable and two categorical explanatory (predictor/independent) variables. For instance, in a completely randomized design we want to compare the response/outcome of a test by various subject-demographics (e.g., age, gender, disease severity, etc.) Subjects are grouped by one demographic-factor and then randomly assigned one treatment-factor (hence two-way!)
  
 
The methodological details about the 2-Way ANOVA may be found at [http://mathworld.wolfram.com/ANOVA.html Wolfram Research], [http://en.wikipedia.org/wiki/Analysis_of_variance Wikipedia] and [http://www.google.com/search?hl=en&q=two-way+ANOVA&btnG=Search elsewhere]. A motivational example demonstrating the need and utilization of 2-Way designs and analyses [http://www.uwsp.edu/psych/stat/13/anova-2w.htm can be found here].
 
The methodological details about the 2-Way ANOVA may be found at [http://mathworld.wolfram.com/ANOVA.html Wolfram Research], [http://en.wikipedia.org/wiki/Analysis_of_variance Wikipedia] and [http://www.google.com/search?hl=en&q=two-way+ANOVA&btnG=Search elsewhere]. A motivational example demonstrating the need and utilization of 2-Way designs and analyses [http://www.uwsp.edu/psych/stat/13/anova-2w.htm can be found here].
Line 12: Line 12:
 
* Presense of an interaction between the two factors.
 
* Presense of an interaction between the two factors.
  
==Examples==
+
===Examples===
  
This really simple SOCR built-in example, '''EXAMPLE 1''' uses a dataset from "An Introduction to Computational Statistics: Regression Analyses" by Robert Jennrich, Prentice Hall, 1995 (Page 207). The data are about the time taken for coins to drop into different water fountain. Here, the dependent variable is time taken. And the two independent variables are: '''I''' for coin type, where "'''1'''" denotes for quarters and "'''2'''" for dimes; '''J''' for three different fountains. Our interest is to see if time is significantly related to these two independent factors. This example demonstrates a general two-way additive ANOVA model.
+
Go to the [http://www.socr.ucla.edu/htmls/ana/ANOVA2Way_Analysis.html SOCR 2-Way ANOVA Applet]. This really simple SOCR built-in example, '''EXAMPLE 1''' uses a dataset from [http://www.amazon.ca/Introduction-Computational-Statistics-Regression-Analysis/dp/0134548108 An Introduction to Computational Statistics: Regression Analyses" by Robert Jennrich, Prentice Hall, 1995 (Page 207)]. The data are about the time taken for coins to drop into different water fountain. Here, the dependent variable is time taken. And the two independent variables are: '''I''' for coin type, where "'''1'''" denotes for quarters and "'''2'''" for dimes; '''J''' for three different fountains. Our interest is to see if time is significantly related to these two independent factors. This example demonstrates a general two-way additive ANOVA model.
  
 
Here are the steps of the activities:
 
Here are the steps of the activities:
Line 21: Line 21:
 
* Click on "'''Anova Two Way'''" at the '''left''' panel's combo box.  
 
* Click on "'''Anova Two Way'''" at the '''left''' panel's combo box.  
 
   
 
   
 +
 
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig1.gif|700px]]</center>
 
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig1.gif|700px]]</center>
  
  
 
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig2.gif|450px]]</center>
 
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig2.gif|450px]]</center>
 +
  
 
On the '''right''' panel, first click on "'''EXAMPLE 1'''" and next click on "'''Data'''" to retreive the demonstrating example. The column '''X''' is '''time''', the response variable, which is treated as a quantitative variable. The columns '''I''' and '''J''' are the independent variables.  
 
On the '''right''' panel, first click on "'''EXAMPLE 1'''" and next click on "'''Data'''" to retreive the demonstrating example. The column '''X''' is '''time''', the response variable, which is treated as a quantitative variable. The columns '''I''' and '''J''' are the independent variables.  
 +
  
 
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig1B.gif|700px]]</center>
 
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig1B.gif|700px]]</center>
Line 33: Line 36:
 
* Click on the "'''Mapping'''" button to get to the "Mapping" panel. Click on "'''ADD'''" under '''Dependent''' to add '''X''', and click on "'''ADD'''" under Independent to add '''I''' and '''J'''.
 
* Click on the "'''Mapping'''" button to get to the "Mapping" panel. Click on "'''ADD'''" under '''Dependent''' to add '''X''', and click on "'''ADD'''" under Independent to add '''I''' and '''J'''.
  
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig2A.gif|700px]]</center>
+
 
 +
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig3.gif|700px]]</center>
 +
 
  
 
* Next, click on "'''Calculate'''" to let the computer do the calculation. Then click on "'''Result'''" to see the results.
 
* Next, click on "'''Calculate'''" to let the computer do the calculation. Then click on "'''Result'''" to see the results.
  
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig3..gif|700px]]</center>
+
 
 +
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig3A.gif|700px]]</center>
 +
 
  
 
* Plots are available for vewing and checking regression dignostics. Click on "'''Graph'''" to see plots.
 
* Plots are available for vewing and checking regression dignostics. Click on "'''Graph'''" to see plots.
 +
  
  
 
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig4.gif|700px]]</center>
 
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig4.gif|700px]]</center>
  
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig4.gif|700px]]</center>
 
  
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig4.gif|700px]]</center>
+
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig5.gif|700px]]</center>
 +
 
 +
 
 +
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig6.gif|700px]]</center>
 +
 
 +
 
 +
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig7.gif|700px]]</center>
 +
 
 +
 
 +
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig8.gif|700px]]</center>
 +
 
  
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig4.gif|700px]]</center>
+
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig9.gif|700px]]</center>
  
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig4.gif|700px]]</center>
+
===Technical Notes===
  
<center>[[Image:SOCR_AnalysisActivities_AnovaTwoWay_Chu_051707_Fig4.gif|700px]]</center>
+
====SOCR vs. R and SAS 2-Way ANOVA====
 +
SOCR 2-Way ANOVA handles repeated measures and some of the default examples cover this situation (e.g., Example 2).
 +
There is a difference between the [http://www.r-project.org R]-based and [http://www.sas.com/ SAS]-based approaches to repeated measures. In SOCR 2-Way ANOVA, we follow the SAS model and apply the ''dummy variable method'' described in [http://www.amazon.ca/Introduction-Computational-Statistics-Regression-Analysis/dp/0134548108 Jennrich's book]. Thus, the SOCR results format is the same as the output of SAS, in terms of degrees of freedom, sum of squares, etc. R's output is a little different from SAS's, and therefore it's not the same as the results reported by SOCR. In R, the order of the two factors (J and K) matters in the input. That is, if you put factor J first or K first, then the 2-way Anova results will be different. When the second factor is evaluated, the first one is considered fixed in R.
  
 +
===See also===
 +
* [[SOCR_Activity_ANOVA_SnailsSexualDimorphism| SOCR ANOVA Snails Sexual Dimorphism Activity]]
  
 
{{translate|pageName=http://wiki.stat.ucla.edu/socr/index.php?title=SOCR_EduMaterials_AnalysisActivities_ANOVA_2}}
 
{{translate|pageName=http://wiki.stat.ucla.edu/socr/index.php?title=SOCR_EduMaterials_AnalysisActivities_ANOVA_2}}

Latest revision as of 18:55, 28 November 2012

SOCR Analyses Example on Two-Way Analysis of Variance

Background

The 2-Way Analysis of Variance (ANOVA) is a statistical technique for analyzing study designs with one numerical outcome (response/dependent) variable and two categorical explanatory (predictor/independent) variables. For instance, in a completely randomized design we want to compare the response/outcome of a test by various subject-demographics (e.g., age, gender, disease severity, etc.) Subjects are grouped by one demographic-factor and then randomly assigned one treatment-factor (hence two-way!)

The methodological details about the 2-Way ANOVA may be found at Wolfram Research, Wikipedia and elsewhere. A motivational example demonstrating the need and utilization of 2-Way designs and analyses can be found here.

2-way ANOVA is based on decomposing the variance of the response/dependent variable (total sum of squares) into within and between sum of squares. Sum of Squares between is then itself partitioned by intervention (blocking and interaction).

Typical hypotheses being tested in 2-way ANOVA are:

  • Presense of significant main effects (within each of the 2 factors);
  • Presense of an interaction between the two factors.

Examples

Go to the SOCR 2-Way ANOVA Applet. This really simple SOCR built-in example, EXAMPLE 1 uses a dataset from An Introduction to Computational Statistics: Regression Analyses" by Robert Jennrich, Prentice Hall, 1995 (Page 207). The data are about the time taken for coins to drop into different water fountain. Here, the dependent variable is time taken. And the two independent variables are: I for coin type, where "1" denotes for quarters and "2" for dimes; J for three different fountains. Our interest is to see if time is significantly related to these two independent factors. This example demonstrates a general two-way additive ANOVA model.

Here are the steps of the activities:


  • Click on "Anova Two Way" at the left panel's combo box.


SOCR AnalysisActivities AnovaTwoWay Chu 051707 Fig1.gif


SOCR AnalysisActivities AnovaTwoWay Chu 051707 Fig2.gif


On the right panel, first click on "EXAMPLE 1" and next click on "Data" to retreive the demonstrating example. The column X is time, the response variable, which is treated as a quantitative variable. The columns I and J are the independent variables.


SOCR AnalysisActivities AnovaTwoWay Chu 051707 Fig1B.gif


  • Click on the "Mapping" button to get to the "Mapping" panel. Click on "ADD" under Dependent to add X, and click on "ADD" under Independent to add I and J.


SOCR AnalysisActivities AnovaTwoWay Chu 051707 Fig3.gif


  • Next, click on "Calculate" to let the computer do the calculation. Then click on "Result" to see the results.


SOCR AnalysisActivities AnovaTwoWay Chu 051707 Fig3A.gif


  • Plots are available for vewing and checking regression dignostics. Click on "Graph" to see plots.


SOCR AnalysisActivities AnovaTwoWay Chu 051707 Fig4.gif


SOCR AnalysisActivities AnovaTwoWay Chu 051707 Fig5.gif


SOCR AnalysisActivities AnovaTwoWay Chu 051707 Fig6.gif


SOCR AnalysisActivities AnovaTwoWay Chu 051707 Fig7.gif


SOCR AnalysisActivities AnovaTwoWay Chu 051707 Fig8.gif


SOCR AnalysisActivities AnovaTwoWay Chu 051707 Fig9.gif

Technical Notes

SOCR vs. R and SAS 2-Way ANOVA

SOCR 2-Way ANOVA handles repeated measures and some of the default examples cover this situation (e.g., Example 2). There is a difference between the R-based and SAS-based approaches to repeated measures. In SOCR 2-Way ANOVA, we follow the SAS model and apply the dummy variable method described in Jennrich's book. Thus, the SOCR results format is the same as the output of SAS, in terms of degrees of freedom, sum of squares, etc. R's output is a little different from SAS's, and therefore it's not the same as the results reported by SOCR. In R, the order of the two factors (J and K) matters in the input. That is, if you put factor J first or K first, then the 2-way Anova results will be different. When the second factor is evaluated, the first one is considered fixed in R.

See also



Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif