Difference between revisions of "SOCR EduMaterials Activities Discrete Distributions"

From SOCR
Jump to: navigation, search
(This is an activity to explore the Negative Binomial Probability Distribution.)
(This is an activity to explore the Poisson Probability Distribution.)
Line 16: Line 16:
  
  
<center>[[Image: SOCR_Activities_Christou_poisson.jpg|600px]]</center>
+
<center>[[Image: SOCR_Activities_Christou_poisson1.jpg|600px]]</center>
  
  

Revision as of 15:07, 1 November 2006

This is an activity to explore the Poisson Probability Distribution.


  • Exercise 1: Use SOCR to graph and print the distribution of a Poisson random variable with \( \lambda=2 \). What is the shape of this distribution?
  • Exercise 2: Use SOCR to graph and print the distribution of a Poisson random variable with \( \lambda=15 \). What is the shape of this distribution? What happens when you keep increasing \( \lambda \)?
  • Exercise 3: Let \( X \sim Poisson(5) \). Find \( P(3 \le X < 10) \), and \( P(X >10 | X \ge 4) \).
  • Exercise 4: Poisson approximation to binomial: Graph and print \( X \sim b(60, 0.02) \). Approximate this probability distribution using Poisson. Choose three values of \( X \) and compute the probability for each one using Poisson and then using binomial. How good is the approximation?


Below you can see the distribution of a Poisson random variable with \( \lambda=5 \). In this graph you can also see the probability that between 2 and 5 events will occur.


600px






Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif

</math>