Difference between revisions of "SMHS LinearModeling"

From SOCR
Jump to: navigation, search
(Scientific Methods for Health Sciences - Linear Modeling)
 
(28 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
==[[SMHS| Scientific Methods for Health Sciences]] - Linear Modeling ==
 
==[[SMHS| Scientific Methods for Health Sciences]] - Linear Modeling ==
  
===Statistical Software- Pros/Cons Comparison===
+
The following sub-sections represent a blend of model-based and model-free scientific inference, forecasting and validity.
  
===Quality Control===
+
===[[SMHS_LinearModeling_StatsSoftware|Statistical Software]]===
'''Questions:
+
This section briefly describes the pros and cons of different statistical software platforms.
*''' Is the data what it’s supposed to (does it represent the study cohort/population)?
 
*''' How to inspect the quality of the data?
 
  
Data Quality Control (QC) and Quality Assurance (QA) represent important components of all modeling, analytics and visualization that precede all subsequent data processing steps. QC and QA may be performed manually or automatically. Statistical quality control involves quantitative methods for monitoring and controlling a process or data derived from observing a natural phenomenon. For example, is there evidence in the plots below of a change in the mean of these processes?
+
===[[SMHS_LinearModeling_QC|Quality Control]]===
 +
Discussion of data Quality Control (QC) and Quality Assurance (QA) which represent important components of data-driven modeling, analytics and visualization.
  
# simulate data with base value of 100 w/ normally distributed error
+
===[[SMHS_LinearModeling_MLR |Multiple Linear Regression]]===
# install.packages("qcc")
+
Review and demonstration of computing and visualizing the regression-model coefficients (effect-sizes), (fixed-effect) linear model assumptions, examination of residual plots, and independence.
library(qcc)
 
demo.data.1 <- rep(100, 1000) + rnorm(1000, mean=0, sd=2)
 
qcc(demo.data.1, type="xbar.one", center=100, add.stats=FALSE,
 
    title="Simulation 1", xlab="Index")
 
 
 
[[Image:SMHS_LinearModeling_Fig1.png|500px]]
 
 
 
 
 
attach(data_1) 
 
# to ensure all variables are accessible within R, e.g., using age instead of data_1$\$$age
 
# i2 maximum number of drinks (standard units) consumed per day (in the past 30 days range 0–184) see also i1
 
# treat randomization group (0=usual care, 1=HELP clinic)
 
# pcs SF-36 Physical Component Score (range 14-75)
 
# mcs SF-36 Mental Component Score(range 7-62)
 
# cesd Center for Epidemiologic Studies Depression scale (range 0–60)
 
# indtot Inventory of Drug Use Con-sequences (InDUC) total score (range 4–45)
 
# pss_fr perceived social supports (friends, range 0–14) see also dayslink
 
# drugrisk Risk-Assessment Battery(RAB) drug risk score (range0–21)
 
# satreat any BSAS substance abuse treatment at baseline (0=no,1=yes)
 
 
 
===Fragment of the data===
 
<center>
 
{| class="wikitable" style="text-align:center; " border="1"
 
|-
 
! ID ||i2 ||age ||treat ||homeless ||pcs ||mcs ||cesd ||indtot ||pss_fr ||drugrisk ||sexrisk ||satreat ||female ||substance ||racegrp
 
|-
 
| 1 ||0 ||25 ||0 ||0 ||49 ||7 ||46 ||37 ||0 ||1 ||6 ||0 ||0 ||cocaine ||black
 
|-
 
| 2 ||18 ||31 ||0 ||0 ||48 ||34 ||17 ||48 ||0 ||0 ||11 ||0 ||0 ||alcohol ||white
 
|-
 
| 3 ||39 ||36 ||0 ||0 ||76 ||9 ||33 ||41 ||12 ||19 ||4 ||0 ||0 ||heroin ||black
 
|-
 
| … || || || || || || || || || || || || || || ||
 
|-
 
| 100 ||81 ||22 ||0 ||0 ||37 ||17 ||19 ||30 ||3 ||0 ||10 ||0 ||0 ||alcohol ||other
 
|}
 
</center>
 
 
 
===Testing section===
 
 
 
summary(data_1)
 
 
x.norm <- rnorm(n=200, m=10, sd=20)
 
hist(x.norm, main="N(10,20) Histogram")
 
hist(x.norm, main="N(10,20) Histogram")
 
mean(data_1$\$$age)
 
sd(data_1$\$$age)
 
 
 
 
 
Simulate new data to match the properties/characteristics of observed data
 
 
 
* i2 [0: 184]
 
* age m=34,sd=12
 
* treat {0,1}
 
* homeless {0,1}
 
* pcs 14-75
 
* mcs 7-62
 
* cesd 0–60
 
* indtot 4-45
 
* pss_fr 0-14
 
* drugrisk 0-21
 
* sexrisk
 
* satreat (0=no,1=yes)
 
* female (0=no,1=yes)
 
* racegrp (black, white, other)
 
 
# Demographics variables
 
Sex <- ifelse(runif(NumSubj)<.5,0,1)
 
Weight <- as.integer(rnorm(NumSubj, 80,10))
 
Age <- as.integer(rnorm(NumSubj, 62,10))
 
 
 
# Diagnosis:
 
Dx <- c(rep("PD", 100), rep("HC", 100), rep("SWEDD", 82))
 
 
 
# Genetics
 
chr12_rs34637584_GT <- c(ifelse(runif(100)<.3,0,1), ifelse(runif(100)<.6,0,1), ifelse(runif(82)<.4,0,1))                              # NumSubj Bernoulli trials
 
chr17_rs11868035_GT <- c(ifelse(runif(100)<.7,0,1), ifelse(runif(100)<.4,0,1), ifelse(runif(82)<.5,0,1))                              # NumSubj Bernoulli trials
 
 
 
# Clinical          # rpois(NumSubj, 15) + rpois(NumSubj, 6)
 
UPDRS_part_I <- c( ifelse(runif(100)<.7,0,1)+ifelse(runif(100)<.7,0,1),
 
ifelse(runif(100)<.6,0,1)+ ifelse(runif(100)<.6,0,1),
 
ifelse(runif(82)<.4,0,1)+ ifelse(runif(82)<.4,0,1) )
 
UPDRS_part_II <- c(sample.int(20, 100, replace=T), sample.int(14, 100, replace=T),
 
sample.int(18, 82, replace=T) )
 
UPDRS_part_III <- c(sample.int(30, 100, replace=T), sample.int(20, 100, replace=T),
 
    sample.int(25, 82, replace=T) )
 
 
 
# Time: VisitTime – done automatically below in aggregator
 
 
 
# Data (putting all components together)
 
sim_PD_Data <- cbind(
 
          rep(Cases, each= NumTime),                          # Cases
 
          rep(L_caudate_ComputeArea, each= NumTime), # Imaging
 
          rep(Sex, each= NumTime),                            # Demographics
 
          rep(Weight, each= NumTime),
 
          rep(Age, each= NumTime),
 
          rep(Dx, each= NumTime),                            # Dx
 
          rep(chr12_rs34637584_GT, each= NumTime),            # Genetics
 
          rep(chr17_rs11868035_GT, each= NumTime),
 
          rep(UPDRS_part_I, each= NumTime),                  # Clinical
 
          rep(UPDRS_part_II, each= NumTime),
 
          rep(UPDRS_part_III, each= NumTime),
 
          rep(c(0,6,12,18), NumSubj)                          # Time
 
)
 
 
 
# Assign the column names
 
colnames(sim_PD_Data) <- c(
 
"Cases",
 
"L_caudate_ComputeArea",
 
"Sex", "Weight", "Age",
 
"Dx", "chr12_rs34637584_GT", "chr17_rs11868035_GT",
 
"UPDRS_part_I", "UPDRS_part_II", "UPDRS_part_III",
 
"Time"
 
)
 
 
 
# some QC
 
summary(sim_PD_Data)
 
dim(sim_PD_Data)
 
head(sim_PD_Data)
 
 
 
 
 
.....
 
 
 
<center>[[Image:SMHS_DataSimulation_Fig1.png|500px]] </center>
 
 
 
 
 
....
 
  
 +
===[[SMHS_LinearModeling_LMM |Linear mixed effects analyses]]===
 +
Scientific inference based on fixed and random effect models, assumptions, and mixed effects logistic regression.
  
 +
===[[SMHS_LinearModeling_MachineLearning|Machine Learning Algorithms]]===
 +
Data modeling, training , testing, forecasting, prediction, and simulation.
  
 
<hr>
 
<hr>
 
* SOCR Home page: http://www.socr.umich.edu
 
* SOCR Home page: http://www.socr.umich.edu
 
 
{{translate|pageName=http://wiki.socr.umich.edu/index.php?title=SMHS_LinearModeling}}
 
{{translate|pageName=http://wiki.socr.umich.edu/index.php?title=SMHS_LinearModeling}}

Latest revision as of 07:47, 19 May 2016

Scientific Methods for Health Sciences - Linear Modeling

The following sub-sections represent a blend of model-based and model-free scientific inference, forecasting and validity.

Statistical Software

This section briefly describes the pros and cons of different statistical software platforms.

Quality Control

Discussion of data Quality Control (QC) and Quality Assurance (QA) which represent important components of data-driven modeling, analytics and visualization.

Multiple Linear Regression

Review and demonstration of computing and visualizing the regression-model coefficients (effect-sizes), (fixed-effect) linear model assumptions, examination of residual plots, and independence.

Linear mixed effects analyses

Scientific inference based on fixed and random effect models, assumptions, and mixed effects logistic regression.

Machine Learning Algorithms

Data modeling, training , testing, forecasting, prediction, and simulation.




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif