Difference between revisions of "Formulas"

From SOCR
Jump to: navigation, search
(Probability Density Functions (PDFs): added Multinomial)
m (Text replacement - "{{translate|pageName=http://wiki.stat.ucla.edu/socr/" to ""{{translate|pageName=http://wiki.socr.umich.edu/")
 
(177 intermediate revisions by 4 users not shown)
Line 17: Line 17:
 
  \mbox{0 otherwise} \end{cases} </math>
 
  \mbox{0 otherwise} \end{cases} </math>
 
* [http://socr.ucla.edu/htmls/dist/Binomial_Distribution.html Binomial] PMF: <math> \begin{pmatrix} n  \\ k \end{pmatrix} p^k (1-p)^{n-k}</math>
 
* [http://socr.ucla.edu/htmls/dist/Binomial_Distribution.html Binomial] PMF: <math> \begin{pmatrix} n  \\ k \end{pmatrix} p^k (1-p)^{n-k}</math>
*  [http://socr.ucla.edu/htmls/dist/Multinomiall_Distribution.html Multinomial] PMF: <math>f(x_1, x_2, \cdots, x_k)={n\choose x_1,x_2,\cdots, x_k}p_1^{x_1}p_2^{x_2}\cdots p_k^{x_k}</math>, where <math>\forall x_1+x_2+\cdots+x_k=n</math>, and <math>\forall p_1+p_2+\cdots+p_k=1</math>.
+
*  [http://socr.ucla.edu/htmls/dist/Multinomiall_Distribution.html Multinomial] PMF: <math>f(x_1, x_2, \cdots, x_k)={n\choose x_1,x_2,\cdots, x_k}p_1^{x_1}p_2^{x_2}\cdots p_k^{x_k}</math>, where <math>x_1+x_2+\cdots+x_k=n</math>, <math>p_1+p_2+\cdots+p_k=1</math>, and <math>0 \le x_i \le n, 0 \le p_i \le 1</math>.
 
* [http://socr.ucla.edu/htmls/dist/NegativeBinomial_Distribution.html Negative Binomial] PMF: <math> \begin{pmatrix} k + r - 1 \\ k \end{pmatrix} p^r(1-p)^k </math>
 
* [http://socr.ucla.edu/htmls/dist/NegativeBinomial_Distribution.html Negative Binomial] PMF: <math> \begin{pmatrix} k + r - 1 \\ k \end{pmatrix} p^r(1-p)^k </math>
 +
* [http://socr.ucla.edu/htmls/dist/NegativeMultiNomial_Distribution.html Negative-Multinomial Binomial] PMF: <math> P(k_o, \cdots, k_r) = \Gamma(k_o + \sum_{i=1}^r{k_i}) \frac{p_o^{k_o}}{\Gamma(k_o)} \prod_{i=1}^r{\frac{p_i^{k_i}}{k_i!}} </math>
 
* [http://socr.ucla.edu/htmls/dist/Geometric_Distribution.html Geometric] PMF: <math> \begin{pmatrix} 1-p \end{pmatrix} ^{k-1}p  </math>
 
* [http://socr.ucla.edu/htmls/dist/Geometric_Distribution.html Geometric] PMF: <math> \begin{pmatrix} 1-p \end{pmatrix} ^{k-1}p  </math>
 
* [http://socr.ucla.edu/htmls/dist/Erlang_Distribution.html Erlang] PDF: <math> \frac {\lambda x^{k-1}e^{-\lambda x}} {(k-1)!} </math>
 
* [http://socr.ucla.edu/htmls/dist/Erlang_Distribution.html Erlang] PDF: <math> \frac {\lambda x^{k-1}e^{-\lambda x}} {(k-1)!} </math>
Line 45: Line 46:
 
* [http://socr.ucla.edu/htmls/dist/Gompertz_Distribution.html Gompertz]: <math>b e^{-bx} e^{-\eta e^{-bx}}\left[1 + \eta\left(1 - e^{-bx}\right)\right]</math>
 
* [http://socr.ucla.edu/htmls/dist/Gompertz_Distribution.html Gompertz]: <math>b e^{-bx} e^{-\eta e^{-bx}}\left[1 + \eta\left(1 - e^{-bx}\right)\right]</math>
 
* [http://socr.ucla.edu/htmls/dist/Cauchy_Distribution.html Standard Cauchy]: <math> f(x; 0,1) = \frac{1}{\pi (1 + x^2)}. \!</math>
 
* [http://socr.ucla.edu/htmls/dist/Cauchy_Distribution.html Standard Cauchy]: <math> f(x; 0,1) = \frac{1}{\pi (1 + x^2)}. \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Rectangular.html Rectangular]: <math> f(x)=\frac{1}{n+1}.(x=0,1,...,n)\!</math>
 +
* [http://mathworld.wolfram.com/BetaBinomialDistribution.html Beta-Binomial]: <math> f(x)=\frac{\Gamma(x+a)\Gamma(n-x+b)\Gamma(a+b)\Gamma(n+2)}{(n+1)\Gamma(a+b+n)\Gamma(a)\Gamma(b)\Gamma(x+1)\Gamma(n-x+1)}.(x=0,1,...,n)\!</math>
 +
* [http://planetmath.org/encyclopedia/NegativeHypergeometricDistribution.html Negative Hypergeometric]: <math> f(x)=\frac{\begin{pmatrix} n_1+x-1  \\ x \end{pmatrix} \begin{pmatrix} n_3-n_1+n_2-x-1  \\ n_2-x \end{pmatrix}}{\begin{pmatrix} n_3+n_2-1  \\ n_2 \end{pmatrix}}. (x=max(0,n_1+n_2-n_3),...,n_2)\!</math>
 +
* [[AP_Statistics_Curriculum_2007_Power_Standard |Standard Power]]: <math> f(x; \beta) = \beta x^{\beta - 1} \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Power_Series.html Power_Series]: <math> f(x; c; A(c)) = a(x) c^x / A(c). (x=(0,1,...), c>0, A(c)=\sum_{x}a(x) c^x) \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Zeta.html Zeta]: <math> f(x)=\frac{1}{x^a \sum_{i=1}^{\infty}(\frac{1}{i})^a}. (x=1,2,...) \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Logarithm.html Logarithm]: <math> f(x)=\frac{-(1-c)^x}{x\log c}. (x=1,2,...,  0<c<1) \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Beta_Pascal(factorial).html Beta_Pascal]: <math>  f(x; a, b, n) = \binom{n-1+x}{x} \frac{B(n+a, b+x)}{B(a,b)}. (x=(0,1,...); a+b=n) \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Gamma_Poisson.html Gamma_Poisson]: <math> f(x; \alpha, \beta) = \frac{\Gamma(x+\beta) \alpha^x}{\Gamma(\beta) (1+\alpha)^{\beta+x} x!}.(x=(0,1,...); \alpha>0; \beta>0) \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Pascal.html Pascal]: <math> f(x; p, n) = \binom{n-1+x}{x} p^n (1-p)^x. (x=(0,1,...,n); 0 \leq p \leq 1)\!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Polya.html Polya]: <math> f(x; n, p, \beta) = \binom{n}{x} \frac{\prod_{j=0}^{x-1}(p+j\beta) \prod_{k=0}^{n-x-1}(1-p+k\beta)}{\prod_{i=0}^{n-1}(1+i\beta)}. (x=\{0,1,...,n\}) \!</math>
 +
* [http://en.wikipedia.org/wiki/Normal-gamma_distribution Normal-Gamma]: <math> f(x, \tau; \mu, \lambda,\alpha,\beta) = \frac{\beta^\alpha \sqrt(\lambda)}{\Gamma(\alpha) \sqrt(2 \pi)} \tau^{\alpha-1/2} exp(-\beta \tau) exp(-\frac{\lambda \tau (x-\mu)^2}{2}).(\tau>0) \!</math>
 +
* [http://en.wikipedia.org/wiki/Discrete_Weibull_distribution Discrete_Weibull]: <math> f(x; p, \beta) = (1-p)^{x^\beta}-(1-p)^{(x+1)^\beta}. (x=\{0,1,...\}) \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/LogGamma.html Log Gamma]: <math> f(x)=[1/ \alpha^\beta \Gamma(\beta)]e^{\beta x}e^{-e^x/a}. (-\infty<x<\infty) \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/GeneralizedGamma.html Generalized Gamma]: <math> f(x)=\frac{\gamma}{\alpha^{\gamma \beta}\Gamma(\beta)}x^{\gamma \beta-1}e^{-(x/\alpha)^\gamma}. (x>0) \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Noncentral-Beta.html Noncentral-Beta]: <math> f(x; \beta, \gamma, \delta) = \sum_{i=0}^{\infty}\frac{\Gamma(i+\beta+\gamma)}{\Gamma(\gamma) \Gamma(i+\beta)} \frac{exp(-\delta/2)}{i!} (\delta/2)^i x^{i+\beta-1} (1-x)^{\gamma-1}. (0 \leq x \leq 1). \!</math>
 +
* [http://en.wikipedia.org/wiki/Inverse_Gaussian_distribution Inverse Gausian]: <math> f(x)=\sqrt{\frac{\lambda}{2\pi x^3}}e^{-\frac{\lambda}{2\mu^2 x}(x-\mu)^2}. (x>0) \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Noncentral_chi-square.html Noncentral_chi-square]: <math> f(x; n,\delta) =  f(x; n,\delta) = \sum_{k=0}^{\infty}\frac{exp(-\delta/2) (\delta/2)^k}{k!}\frac{exp(-x/2) x^{(n+2k)/2-1}}{2^{(n+2k)/2} \Gamma(\frac{n+2k}{2})}. \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/StandardWald.html Standard Wald]: <math> f(x)=\sqrt{\frac{\lambda}{2\pi x^3}}e^{-\frac{\lambda}{2x}(x-1)^2}. (x>0) \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/InvertedBeta.html Inverted Beta]: <math> f(x)=\frac{x^{\beta-1}(1+x)^{-\beta-\gamma}}{B(\beta,\gamma)}. (x>0, \beta>1, \gamma>1) \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Arctangent.html Arctangent]: <math> f(x; \lambda, \phi)= \frac{\lambda}{[arctan(\lambda \phi)+\pi/2][1+\lambda^2 (x - \phi)^2]} (x \geq 0, -\infty < \lambda < \infty) \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Makeham.html Makeham]: <math> f(x) = (\gamma + \delta\kappa^x)exp(-\gamma x-\frac{\delta
 +
(\kappa^x-1)}{log(\kappa)}). x>0 \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Hypoexponential.html Hypoexponential]: <math> f(x) = \sum_{i=1}^{n}(1/\alpha_i)exp(-x/\alpha_i)(\prod_{j=1,j\neq i}^{n}\frac{\alpha_i}{\alpha_i-\alpha_j}). x>0 \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Doubly-noncentral-t_Distribution.html Doubly Noncentral t]: <math>  \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Hyperexponential_Distribution.html Hyperexponential]: <math> f(x) = \sum_{i=1}^{n}\frac{p_i}{\alpha_i}e^{-x/\alpha_i}. x>0 \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Muth.html Muth]: <math> f(x) = (e^{\kappa x}-\kappa)e^{-(1/\kappa)e^{\kappa x}+\kappa x+1/\kappa}. x>0 \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Error.html Error]: <math> f(x) = \frac{exp[-(|x-a|/b)^{2/c}/2]}{b 2^{c/2+1}\Gamma(1+c/2)}. -\infty < x < \infty \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Minimax.html Minimax]: <math> f(x) = \beta\gamma x^{\beta-1}(1-x^\beta)^{\gamma-1}. 0<x<1 \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Noncentral-F.html Noncentral F]: <math> f(x) = \sum_{i=0}^{\infty}\frac{\Gamma(\frac{2i+n_1+n_2}{2})(n_1/n_2)^{(2i+n_1)/2}x^{(2i+n_1-2)/2}e^{-\delta/2}(\delta/2)^i}{\Gamma(n_2/2)\Gamma(\frac{2i+n_1}{2})i!(1+\frac{n_1}{n_2}x)^{(2i+n_1+n_2)/2}}. x>0 \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/IDB.html IDB]: <math> f(x) = \frac{(1+\kappa x)\delta x+\gamma}{(1+\kappa x)^{\gamma/\kappa+1}}e^{-\delta x^2/2}. x>0 \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Standard-power.html Standard Power]: <math> f(x) = \beta x^{\beta-1}. 0<x<1 \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Rayleigh.html Rayleigh]: <math> f(x) = \frac{2x}{\alpha}e^{-x^2/\alpha}. x>0 \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Standard-triangular.html Standard Triangular]: <math> f(x) = \begin{cases} x+1, -1<x<0 \\
 +
1 - x, 0 \leq x<1 \end{cases} \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Doubly-noncentral-F.html Doubly noncentral F]: <math> f(x)= \sum_{j=0}^{\infty}\sum_{k=0}^{\infty}[\frac{e^{-\delta/2}(\frac{1}{2}\delta)^j}{j!}][\frac{e^{-\gamma/2}(\frac{1}{2}\gamma)^k}{k!}]\times n_1^{(n_1/2)+j}n_2^{(n_2/2)+k}x^{(n_1/2)+j-1}\times (n_2+n_1 x)^{-\frac{1}{2}(n_1+n_2)-j-k}\times [B(\frac{1}{2}n_1+j,\frac{1}{2}n_2+k)]^{-1}. x>0  \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Power_Distribution.html Power]: <math> f(x)=\frac{\beta x^{\beta-1}}{\alpha^\beta}. 0<x<\alpha \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Weibull_Distribution.html Weibull]: <math> f(x)=(\beta/\alpha)x^{\beta-1}exp[-(1/\alpha)x^\beta]. x>0  \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Log-logistic_Distribution.html Log-logistic]: <math> f(x)=\frac{\lambda \kappa(\lambda x)^{\kappa-1}}{[1+(\lambda x)^\kappa]^2}. x>0 \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/TwoSidedPower_Distribution.html TSP]: <math> f(x) = \begin{cases} \frac{n}{b-a}(\frac{x-a}{m-a})^{n-1}, a<x\le m \\
 +
\frac{n}{b-a}(\frac{b-x}{b-m})^{n-1}, m\le x<b \end{cases} \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Extreme-value_Distribution.html Extreme value]: <math> f(x)=(\beta/\alpha)e^{x\beta-e^{x\beta}/\alpha}. -\infty<x<\infty \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Lomax_Distribution.html Lomax]: <math> f(x)=\frac{\lambda \kappa}{(1+\lambda x)^{\kappa+1}}. x>0 \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/VonMises_Distribution.html von Mises]: <math> f(x)=\frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}. 0<x<2\pi, 0<\mu<2\pi) \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Generalized-Pareto_Distribution.html Generalized Pareto]: <math> f(x)=(\gamma+\frac{\kappa}{x+\delta})(1+x/\delta)^{-\kappa}e^{-\gamma x}. x>0 \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Triangle_Distribution.html Triangular]: <math> f(x)=\begin{cases} \frac{2(x-a)}{(b-a)(m-a)}, a<x<m \\
 +
  \frac{2(b-x)}{(b-a)(b-m)}, m \le x<b \end{cases}. a<m<b \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Kolmogorov_Distribution.html Kolmogorov-Smirnov]: <math>  \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Exponential-power_Distribution.html Exponential Power]: <math> f(x)=(e^{1-e^{\lambda x^\kappa}})e^{\lambda x^\kappa}\lambda \kappa x^{\kappa-1}. x>0 \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Lévy_Distribution.html Lévy distribution]: <math> L_{\alpha ,\gamma } (y)={1\over \pi } \int _{0}^{\infty }e^{-\gamma q^{\alpha } } \cos (qy) dq    ,            y\in {\rm R} , \gamma >0 , 0<\alpha <2  </math>
 +
* [http://socr.ucla.edu/htmls/dist/Modified-Power-Series_Distribution.html Modified Power Series distributon]: <math> P(X=x)={a(x)\left\{u(c)\right\}^{x} \over A(c)}    </math>  where  <math> A(c)=\sum _{x}a(x)\left\{u(c)\right\}^{x}  ,a(x)\ge 0 </math>
 +
* [http://socr.ucla.edu/htmls/dist/Positive-binomial_Distribution.html Positive binomial distribution]: <math> P(X=x)=\binom{n}{x}{p^{x} q^{n-x} \over (1-q^{n} )} </math>          where    <math>  x=1,2,...,n </math>
 +
* [http://socr.ucla.edu/htmls/dist/Basic-Lagrangian-distribution-of-the-first-kind.html Basic Lagrangian distribution of the first kind (BLD1)]: <math> P(X=x)={1\over x!} \left[{\partial ^{x-1} \over \partial z^{x-1} } (g(z))^{x} \right]_{z=0} </math>  where <math>  g(z) </math> is pgf , <math> g(0) </math> is not 0
 +
* [http://socr.ucla.edu/htmls/dist/General-Basic-Lagrangian-distribution-of-the-first-kind.html General Basic Lagrangian distribution of the first kind (GLD1)]: <math> P(X=0)=f(0) ,
 +
P(X=x)={1\over x!} \left[{\partial ^{x-1} \over \partial z^{x-1} } \left\{(g(z))^{x} {\partial f(z)\over \partial z} \right\}\right]_{z=0}  ,    x>0</math> Where f(z) and g(z) are pgf  ,  <math>\left[{\partial ^{x-1} \over \partial z^{x-1} } \left\{(g(z))^{x} {\partial f(z)\over \partial z} \right\}\right]_{z=0} >0</math> for <math>x\ge 1</math>
 +
* [http://socr.ucla.edu/htmls/dist/Binomial-delta_Distribution.html Binomial-delta distribution]: <math> P(X=x)={n\over x}\binom{{mx}}{x-n}p^{x-n} q^{n+mx-x} </math>  for  <math>x\ge n</math>
 +
* [http://socr.ucla.edu/htmls/dist/Binomial-Poisson_Distribution.html Binomial-Poisson distribution]: <math> P(X=x)=e^{-M} {(Mq^{m} )^{x} \over x!} {}_{2} F{}_{0} [1-x,-mx;{p\over Mq} ] </math>  ,    for  <math>x\ge 0 </math>
 +
* [http://socr.ucla.edu/htmls/dist/Binomial-negative-binomial_Distribution.html Binomial-negative-binomial distribution]: <math> P(X=x)={\Gamma (k+x)\over x!\Gamma (x)} Q^{-k} \left({Pq^{m} \over Q} \right)^{x} {}_{2} F_{1} [1-x,-mx;1-x-k;{-pQ\over qP} ] </math>  for  <math>x\ge 0</math>
 +
* [http://socr.ucla.edu/htmls/dist/Poisson-delta _Distribution.html Poisson-delta distribution]: <math> P(X=x)={n\over x} {e^{-\theta x} (\theta x)^{x-n} \over (x-n)} </math>    for  <math>x\ge n </math>
 +
* [http://socr.ucla.edu/htmls/dist/Poisson-Poisson_Distribution.html Poisson-Poisson distribution(also called "Generalized Poisson distribution")]: <math> P(X=x)=M(M+\theta x)^{x-1} e^{-(M+\theta x)} /x! </math>  for  <math>x\ge 0 </math>
 +
* [http://socr.ucla.edu/htmls/dist/Poisson-binomial_Distribution.html Poisson-binomial distribution]: <math> P(X=x)={(\theta x)^{x-1} \over x!} e^{-\theta x} npq^{n-1} {}_{2} F_{0} [1-x,1-n;{p\over \theta qx} ]    ,    x\ge 1</math>
 +
* [http://socr.ucla.edu/htmls/dist/Poisson-negative-binomial_Distribution.html Poisson-negative-binomial distribution]: <math> P(X=x)={(\theta x)^{x-1} \over x!} e^{-\theta x} kPQ^{-k-1} {}_{2} F_{0} [1-x,1+k;{-P\over \theta Qx} ]    ,  x\ge 1</math>
 +
* [http://socr.ucla.edu/htmls/dist/Negative-binomial-delta_Distribution.html Negative-binomial-delta distribution]: <math> P(X=x)={n\over x} {\Gamma (kx+x-1)\over (x-n)!\Gamma (kx)} \left({P\over Q} \right)^{x-n} Q^{-kx}    ,  x\ge n </math>
 +
* [http://socr.ucla.edu/htmls/dist/Negative-binomial-Poisson_Distribution.html Negative-binomial-Poisson distribution]: <math> P(X=x)={e^{-M} M^{x} \over x!} Q^{-kx} {}_{2} F_{0} [1-x,kx;-;{-P\over MQ} ] </math> ,  for  <math>x\ge 0</math>
 +
* [http://socr.ucla.edu/htmls/dist/Negative-binomial-binomial_Distribution.html Negative-binomial-binomial distribution]: <math> P(X=0)=q^{n} </math> , <math>P(X=x)=npq^{n-1} {\Gamma (kx+x-1)\over x!\Gamma (kx)} \left({P\over Q} \right)^{x-1} Q^{-kx} {}_{2} F_{1} [1-x,1-n;2-x-kx;{-pQ\over Pq} ] </math>  for <math>x\ge 1</math>
 +
* [http://socr.ucla.edu/htmls/dist/Negative-binomial-negative-binomial_Distribution.html Negative-binomial-negative-binomial distribution]: <math> P(X=x)=(Q')^{-M} \left({P'\over Q'Q^{k} } \right)^{x} {\Gamma (M+x)\over x!\Gamma (M)} {}_{2} F_{1} [1-x,kx;1-M-x;{PQ'\over P'Q} ] </math> for <math>x\ge 1</math>
 +
* [http://socr.ucla.edu/htmls/dist/Weight-binomial_Distribution.html Weight binomial distribution]: <math> P(X=x)=w(x)p_{x} /\sum _{x}^{}w(x)p_{x}</math>
 +
* [http://socr.ucla.edu/htmls/dist/Positive-Poisson_Distribution.html Positive Poisson distribution (conditional Poisson distribution)]: <math> P(X=x)=(e^{\theta } -1)^{-1} \theta ^{x} /x! , x=1,2,......</math>
 +
* [http://socr.ucla.edu/htmls/dist/Left-truncated-Poisson_Distribution.html Left-truncated Poisson distribution]: <math> P(X=x)={e^{-\theta } \theta ^{x} \over x!} \left[1-e^{-\theta } \sum _{j=0}^{r_{1} -1}{\theta ^{j} \over j!}  \right]^{-1} , x=r_{1} ,r_{1} +1,...</math>
 +
* [http://socr.ucla.edu/htmls/dist/Right-truncated-Poisson_Distribution.html Right-truncated Poisson distribution]: <math> P(X=x)={\theta ^{x} \over x!} \left[\sum _{j=0}^{r_{2} }{\theta ^{j} \over j!}  \right]^{-1} , x=0,1,...,r_{2}</math>
 +
* [http://socr.ucla.edu/htmls/dist/Doubly-truncated-Poisson_Distribution.html Doubly-truncated Poisson distribution]: <math> P(X=x)={\theta ^{x} \over x!} \left[\sum _{j=r_{1} }^{r_{2} }{\theta ^{j} \over j!}  \right]^{-1} , x=r_{1} ,r_{1} +1,...,r_{2} , 0<r_{1} <r_{2}</math>
 +
* [http://socr.ucla.edu/htmls/dist/Misrecorded-Poisson_Distribution.html Misrecorded Poisson distribution]: <math> P(X=0)=\omega +(1-\omega )e^{-\theta }, P(X=x)=(1-\omega ){e^{-\theta } \theta ^{x} \over x!} , x\ge 1</math>
  
 
==Transformations==
 
==Transformations==
Line 64: Line 137:
 
* [http://en.wikipedia.org/wiki/Binomial_distribution Binomial to General Normal Transformation]: <math> \begin{vmatrix} \mu = np \\ \sigma^2 = np(1-p) \\n \rightarrow \infty \end{vmatrix} </math>
 
* [http://en.wikipedia.org/wiki/Binomial_distribution Binomial to General Normal Transformation]: <math> \begin{vmatrix} \mu = np \\ \sigma^2 = np(1-p) \\n \rightarrow \infty \end{vmatrix} </math>
 
* [http://en.wikipedia.org/wiki/Binomial_distribution Binomial to Poisson Transformation]: <math> \begin{vmatrix}\mu = np \\ n \rightarrow \infty \end{vmatrix} </math>
 
* [http://en.wikipedia.org/wiki/Binomial_distribution Binomial to Poisson Transformation]: <math> \begin{vmatrix}\mu = np \\ n \rightarrow \infty \end{vmatrix} </math>
 +
* [[AP_Statistics_Curriculum_2007_Distrib_Multinomial | Multinomial to Binomial Transformation]]: <math> \begin{vmatrix} k=2 \end{vmatrix} </math>
 
* [http://en.wikipedia.org/wiki/NegativeBinomial_distribution Negative Binomial to Geometric Transformation]: <math> \begin{pmatrix} r = 1 \end{pmatrix} </math>
 
* [http://en.wikipedia.org/wiki/NegativeBinomial_distribution Negative Binomial to Geometric Transformation]: <math> \begin{pmatrix} r = 1 \end{pmatrix} </math>
 
* [http://socr.ucla.edu/htmls/dist/Erlang_Distribution.html Erlang to Exponential Transformation]: <math> \begin{pmatrix} k = 1 \end{pmatrix} </math>
 
* [http://socr.ucla.edu/htmls/dist/Erlang_Distribution.html Erlang to Exponential Transformation]: <math> \begin{pmatrix} k = 1 \end{pmatrix} </math>
Line 96: Line 170:
 
* [http://socr.ucla.edu/htmls/dist/Cauchy_Distribution.html Standard Cauchy to Cauchy]: <math> x_0 + \gamma X \ </math>
 
* [http://socr.ucla.edu/htmls/dist/Cauchy_Distribution.html Standard Cauchy to Cauchy]: <math> x_0 + \gamma X \ </math>
 
* [http://socr.ucla.edu/htmls/dist/HyperbolicSecant_Distribution.html Standard Cauchy to Hyperbolic Secant]: <math> \frac{log|x|}{\pi} \ </math>
 
* [http://socr.ucla.edu/htmls/dist/HyperbolicSecant_Distribution.html Standard Cauchy to Hyperbolic Secant]: <math> \frac{log|x|}{\pi} \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Standard_Power.html Beta to Standard Power]: <math> \alpha=\beta, \beta=1 \ </math>
 +
* [http://en.wikipedia.org/wiki/Pascal Power series to Pascal]: <math> A(c)=(1-c)^{-x}, c=1-p \ </math>
 +
* [http://en.wikipedia.org/wiki/Pacal Gamma Poisson to Pascal]: <math> \alpha=(1-p)/p, \beta=n \ </math>
 +
* [http://en.wikipedia.org/wiki/Gamma_Poisson Poisson to Gamma Poisson]: <math> \mu \sim gamma \ </math>
 +
* [http://en.wikipedia.org/wiki/Rectangular Discrete uniform to Rectangular]: <math> a=0, b=n\ </math>
 +
* [http://en.wikipedia.org/wiki/Rectangualr beta binomial to rectangular]: <math> a=b=1 \ </math>
 +
* [http://en.wikipedia.org/wiki/Negative_hypergeometric beta binomial to negative hypergeometric]: <math> n=n_1, a=n_2, b=n_3 \ </math>
 +
* [http://en.wikipedia.org/wiki/Zeta Zipf to Zeta]: <math> n\to\infty\ </math>
 +
* [http://en.wikipedia.org/wiki/Logarithm Power series to Logarithm]: <math> A(c)=-log(1-c)\ </math>
 +
* [http://en.wikipedia.org/wiki/Poisson Power series to Poisson]: <math> A(c)=e^c, \mu=c\ </math>
 +
* [http://en.wikipedia.org/wiki/Beta_Pascal Pascal to Beta pascal]: <math> p\sim beta\ </math>
 +
* [http://en.wikipedia.org/wiki/Poisson pascal to poisson]: <math> \mu=n/p, n\to\infty\ </math>
 +
* [http://en.wikipedia.org/wiki/Beta_binomial binomial to beta binomial]: <math> p\sim beta, \mu=np, n\to\infty\ </math>
 +
* [http://en.wikipedia.org/wiki/Binomial negative hypergeometric to binomial]: <math> p=n_1/n_3, n_3\to\infty, n_1\to\infty,n_2=n\ </math>
 +
* [http://en.wikipedia.org/wiki/Binomial Polya to Binomial]: <math> \beta=0\ </math>
 +
* [http://en.wikipedia.org/wiki/Geometric Pascal to geometric]: <math> n=1 \ </math>
 +
* [http://en.wikipedia.org/wiki/Pascal geometric to pascal]: <math> \sum{X_i}\ </math>
 +
* [http://en.wikipedia.org/wiki/Geometric discrete weibull to geometric]: <math> \beta=1\ </math>
 +
* [http://en.wikipedia.org/wiki/Normal pascal to normal]: <math> \mu=n(1-p), n\to\infty\ </math>
 +
* [http://en.wikipedia.org/wiki/standard_normal normal to standard normal]: <math> \mu=0, \sigma=1\ </math>
 +
* [http://en.wikipedia.org/wiki/Noncentral_chi-square normal to noncentral_chi-square]: <math> \sum{X_i^2/{\sigma}^2}\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Normal to Chi-square]: <math> (iid) \sum (\frac{x_i-\mu}{\sigma})^2\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Normal_Distribution.html Beta to Normal]: <math> \beta=\gamma \to \infty \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Normal_Distribution.html Normal to Gamma-normal]: <math> \sigma \sim Inverted \ gamma \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Cauchy_Distribution.html Standard Normal to Standard Cauchy]: <math> \frac{X_1}{X_2} \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Normal_Distribution.html Inverse Gaussian to Standard normal]: <math> \lambda \to \infty \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Noncentral chi-square to Chi-square]: <math> \delta=0 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Gamma_Distribution.html Gamma to Log gamma]:<math> log X \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/LogNormal_Distribution.html Generalized gamma to Log normal]:<math> \beta \to
 +
\infty \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Gamma_Distribution.html Generalized gamma to Gamma]:<math> \gamma=1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/InverseGaussian_Distribution.html Inverse Gaussian to Standard Wald]:<math> \mu=1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Inverse Gaussian to Chi-square]:<math> \lambda(X-\mu)^2/(\mu^2 X)\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Chi_Distribution.html Chi-square to Chi]:<math> \sqrt{X}\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Fisher_Distribution.html Chi-square to F]:<math> \frac{X_1/n_1}{X_2/n_2}\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html F to Chi-square]:<math> n_1 X, n_2 \to \infty \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Exponential to Chi-square]:<math> (iid) \frac{2}{\alpha} \sum {X_i}\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Chi-square to Exponential]:<math> \alpha=2, n=2 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Erlang_Distribution.html Chi-square to Erlang]:<math> n \ even\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Gamma to Chi-square]:<math> n=2\beta, \alpha=2 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Beta to Standard Uniform]:<math> \beta=\gamma=1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Erlang_Distribution.html Gamma to Erlang]:<math> \beta=n \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Gamma_Distribution.html Gamma to Inverted Beta]:<math> X_1/X_2, \alpha=1  \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Beta_Distribution.html Beta to Inverted Beta]:<math> \frac{X}{1-X} \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Cauchy_Distribution.html Cauchy to Arctangent]:<math> zero \ truncate \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Erlang_Distribution.html Hypoexponential to Erlang]:<math> \vec \alpha=\alpha \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Exponential to Hypoexponential]:<math> \sum X_i\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Erlang to Exponential]:<math> n=1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Gompertz_Distribution.html Makeham to Gompertz]:<math> \gamma=0 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/StudentT_Distribution.html Doubly noncentral t to Noncentral t]:<math> \gamma=0 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Fisher_Distribution.html Exponential to F]:<math> \alpha=1, X_1/X_2\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Fisher_Distribution.html Noncentral F to F]:<math> \delta \to 0\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Exponential to Hyperexponential]:<math> Mixture\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Hyperexponential to Exponential]:<math> \vec \alpha=\alpha \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html IDB to Exponential]:<math>\delta=\kappa \to 0, \alpha=1/ \gamma \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Rayleigh_Distribution.html Exponential to Rayleigh]:<math> X^2\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Weibull to Exponential]:<math> \beta=1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Weibull_Distribution.html Exponential to Weibull]:<math> X^{1/\beta}\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Muth to Exponential]:<math> \alpha=1, \kappa \to 0 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Gompertz_Distribution.html Standard uniform to Gompertz]:<math> \frac{log[1-(log X)(log \kappa)/\delta]}{log \kappa}\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/ContinuousUniform_Distribution.html Standard uniform to Exponential Power]:<math> [log(1-log(1-X))/\gamma]^{1/\kappa}\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Laplace_Distribution.html Error to Laplace]:<math> a=0, b=\alpha/2, c=2\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Error_Distribution.html Laplace to Error]:<math> \alpha_1=\alpha_2 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Log-logistic_Distribution.html Standard uniform to log logistic]:<math> \frac{1}{\lambda}(\frac{1-X}{X})^{1/\kappa} \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Standard-triangular_Distribution.html Standard uniform to Standard triangular]:<math> X_1-X_2 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/uniform_Distribution.html Standard uniform to uniform]:<math> a+(b-a)X \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Standard-Power_Distribution.html Standard uniform to standard power]:<math> X^{1/\beta} \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Standard-uniform_Distribution.html Standard power to standard uniform]:<math> \beta=1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Standard-power_Distribution.html Standard uniform to standard power]:<math> X_(n) \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Standard-power_Distribution.html Minimax to standard power]:<math> \gamma=1 \ </math>
 +
 +
* [http://socr.ucla.edu/htmls/dist/Rayleigh_Distribution.html IDB to Rayleigh]:<math> \delta=2/\alpha, \gamma=0 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Standard-Power_Distribution.html Power to Standard Power]:<math> \alpha=1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Rayleigh_Distribution.html Weibull to Rayleigh]:<math> \beta=2 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Pareto_Distribution.html Generalized Pareto to Pareto]:<math> \gamma=0, X+\delta \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Standard-triangular_Distribution.html Triangular to standard triangular]:<math> a=-1,b=1,m=0\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Extreme-value_Distribution.html Weibull to Extreme-value]:<math> logX \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Lomax_Distribution.html Log logistic to lomax]:<math> \kappa=1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Log logistic_Distribution.html Lomax to log logistic]:<math> \kappa=1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Logistic_Distribution.html Log logistic to logistic]:<math> logX \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Triangular_Distribution.html TSP to triangular]:<math> n=2 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Uniform_Distribution.html von Mises to Uniform]:<math> \kappa \to 0 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Cauchy_Distribution.html Lévy to Cauchy]:<math> \alpha =1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Gaussian_Distribution.html Lévy to Gaussian]:<math> \alpha \to 2</math>
 +
* [http://socr.ucla.edu/htmls/dist/Power-series_Distribution.html Modified Power Series to Power series]:<math> u(c)=c  \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Geometric_Distribution.html BLD1 to Geometric]:<math> g(z)=1-p+pz \ </math> where<math>0<p<1  \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Borel-Tanner_Distribution.html BLD1 to Borel-Tanner]:<math> g(z)=e^{\lambda (z-1)}  , 0<\lambda  \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Binomial_Distribution.html GLD1 to Binomial]:<math> g(z)=1 \ </math>  and  <math>f(z)=(q'+p'z)^{n}  \ </math>  where  <math>q'=1-p' \ </math>  ,  <math>0<p'<1 \ </math>, and n is positive integer.
 +
* [http://socr.ucla.edu/htmls/dist/Negative-binomial_Distribution.html GLD1 to Negative binomial]:<math> g(z)=1 \ </math>      and  <math>      f(z)=(q'+p'z)^{n} \ </math>        where  <math>      q'=1+P \ </math>  , <math>      0<P \ </math> , and <math>  n=-k<0 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Binomial-delta_Distribution.html GLD1 to Binomial-delta]: <math> g(z)=(q+pz)^{m}  \ </math> , <math>      f(z)=z^{n}  \ </math> , <math> mp<1  \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Binomial-Poisson_Distribution.html GLD1 to Binomial-Poisson]:<math> : g(z)=(q+pz)^{m}  \ </math> , <math> f(z)=e^{M(z-1)} \ </math> , <math> mp<1  \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Binomial-negative-binomial_Distribution.html GLD1 to Binomial-negative-binomial]:<math> g(z)=(q+pz)^{m} \  </math>  ,  <math> f(z)=(Q-Pz)^{-k} \  </math>  ,  <math> mp<1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Poisson-delta_Distribution.html GLD1 to Poisson-delta]: <math> g(z)=e^{\theta (z-1)} \ </math>,  <math> f(z)=z^{n}  \ </math>,  <math> \theta <1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Poisson-Poisson_Distribution.html GLD1 to Poisson-Poisson]: <math> g(z)=e^{\theta (z-1)}  ,  f(z)=e^{M(z-1)}  ,  \theta <1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Poisson-binomial_Distribution.html GLD1 to Poisson-binomial]: <math> g(z)=e^{\theta (z-1)}  ,  f(z)=(q+pz)^{n} , \theta <1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Poisson-negative-binomial_Distribution.html GLD1 to Poisson-negative-binomial]: <math> g(z)=e^{\theta (z-1)}  ,  f(z)=(Q-Pz)^{-k} , \theta <1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Negative-binomial-delta_Distribution.html GLD1 to Negative-binomial-delta]: <math> g(z)=(Q-Pz)^{-k}  ,  f(z)=z^{n}  ,  kP<1  \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Negative-binomial-Poisson_Distribution.html GLD1 to Negative-binomial-Poisson]: <math> g(z)=(Q-Pz)^{-k}    ,  f(z)=e^{M(z-1)}  , kP<1  \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Negative-binomial-binomial_Distribution.html GLD1 to Negative-binomial-binomial]: <math> g(z)=(Q-Pz)^{-k}  ,  f(z)=(q+pz)^{n}  , kP<1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Negative-binomial-negative-binomial_Distribution.html GLD1 to Negative-binomial-negative-binomial]: <math> g(z)=(Q-Pz)^{-k}  ,  f(z)=(Q'-P'z)^{-M}  ,  kP<1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Poisson_Distribution.html Chi-Square to Poisson]: <math> \left(1-F_{\chi _{2(x+1)}^{2} } (2t/\tau )\right)-\left(1-F_{\chi _{2x}^{2} } (2t/\tau )\right) \ </math>      and    <math> \lambda =t/\tau \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Positive-Poisson_Distribution.html Left-truncated Poisson to Positive Poisson]: <math> r_{1} =1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Right-truncated-Poisson_Distribution.html Doubly-truncated Poisson to Right-truncated Poisson]: <math> r_{1} =0 \ </math>
 +
 +
 +
  
 
<hr>
 
<hr>
 +
 
* SOCR Home page: http://www.socr.ucla.edu
 
* SOCR Home page: http://www.socr.ucla.edu
  
{{translate|pageName=http://wiki.stat.ucla.edu/socr/index.php?title=Formulas}}
+
"{{translate|pageName=http://wiki.socr.umich.edu/index.php?title=Formulas}}

Latest revision as of 14:18, 3 March 2020

Probability Density Functions (PDFs)

  • Standard Normal PDF\[f(x)= {e^{-x^2} \over \sqrt{2 \pi}}\]
  • General Normal PDF\[f(x)= {e^{{-(x-\mu)^2} \over 2\sigma^2} \over \sqrt{2 \pi\sigma^2}}\]
  • Chi-Square PDF\[\frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}\,\]
  • Gamma PDF\[x^{k-1} \frac{\exp{\left(-x/\theta\right)}}{\Gamma(k)\,\theta^k}\,\!\]
  • Beta PDF\[ \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\, x^{\alpha-1}(1-x)^{\beta-1}\!\]
  • Student's T PDF\[\frac{\Gamma(\frac{\nu+1}{2})} {\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \left(1+\frac{x^2}{\nu} \right)^{-(\frac{\nu+1}{2})}\!\]
  • Poisson PDF\[\frac{e^{-\lambda} \lambda^k}{k!}\!\]
  • Chi PDF\[\frac{2^{1-k/2}x^{k-1}e^{-x^2/2}}{\Gamma(k/2)}\]
  • Cauchy PDF\[\frac{1}{\pi\gamma \left[1 + \left(\frac{x-x_0}{\gamma}\right)^2\right]}\]
  • Exponential PDF\[ \lambda e^{-\lambda x},\; x \ge 0\]
  • F Distribution PDF\[ \frac {(\frac {d_1 x}{d_1 x + d_2})^{ d_1/2} ( 1 - \frac {d_1 x} {d_1 x + d2}) ^ {d_2/2}} { xB(d_1/2 , d_2/2) } \]
  • Bernoulli PMF\[ f(k;p) \begin{cases} \mbox{p if k = 1,} \\ \mbox{1 - p if k = 0,} \\ \mbox{0 otherwise} \end{cases} \]
  • Binomial PMF\[ \begin{pmatrix} n \\ k \end{pmatrix} p^k (1-p)^{n-k}\]
  • Multinomial PMF\[f(x_1, x_2, \cdots, x_k)={n\choose x_1,x_2,\cdots, x_k}p_1^{x_1}p_2^{x_2}\cdots p_k^{x_k}\], where \(x_1+x_2+\cdots+x_k=n\), \(p_1+p_2+\cdots+p_k=1\), and \(0 \le x_i \le n, 0 \le p_i \le 1\).
  • Negative Binomial PMF\[ \begin{pmatrix} k + r - 1 \\ k \end{pmatrix} p^r(1-p)^k \]
  • Negative-Multinomial Binomial PMF\[ P(k_o, \cdots, k_r) = \Gamma(k_o + \sum_{i=1}^r{k_i}) \frac{p_o^{k_o}}{\Gamma(k_o)} \prod_{i=1}^r{\frac{p_i^{k_i}}{k_i!}} \]
  • Geometric PMF\[ \begin{pmatrix} 1-p \end{pmatrix} ^{k-1}p \]
  • Erlang PDF\[ \frac {\lambda x^{k-1}e^{-\lambda x}} {(k-1)!} \]
  • Laplace PDF\[ \frac {1}{2b} \exp (- \frac{|x-\mu|}{b}) \]
  • Continuous Uniform PDF\[ f(x) = \begin{cases} \frac{1}{b-a} \mbox{ for } a \le x \le b \\ 0 \mbox{ for } x < a \mbox{ or } x > b \end{cases} \]
  • Discrete Uniform PMF\[ f(x) = \begin{cases} 1/n \mbox{ for } a \le x \le b, \\ 0 \mbox{ otherwise} \end{cases} \]
  • Logarithmic PDF\[ f(k) = \frac{-1}{ln(1-p)} \frac{p^k}{k} \]
  • Logistic PDF\[ f(x;u,s) = \frac{e^{-(x-\mu)/s}} {s(1+e^{-(x-\mu)/s})^2} \]
  • Logistic-Exponential PDF\[ f(x;\beta) = \frac { \beta e^x(e^x - 1)^{\beta-1}} {(1+(e^x-1)^\beta))^2} \mbox{ }\mbox{ }x, \beta > 0 \]
  • Power Function PDF\[ f(x) = \frac {\alpha(x-a)^{\alpha-1}} {(b-a)^\alpha} \]
  • Benford's Law\[ P(d) = \log_b(d + 1)- \log_b(d) = \log_b(\frac{d + 1}{d}) \]
  • Pareto PDF\[ \frac {kx^k_m} {x^{k+1}} \]
  • Non-Central Student T PDF\[ f(t)=\frac{\nu^{\nu/2}e^{-\nu\mu^2/2(t^2+\nu)}} {\sqrt{\pi}\Gamma(\nu/2)2^{(\nu-1)/2}(t^2+\nu)^{(\nu+1)/2}} \times\int\limits_0^\infty x^\nu\exp\left[-\frac{1}{2}\left(x-\frac{\mu t}{\sqrt{t^2+\nu}}\right)^2\right]dx \]
  • ArcSine PDF\[ f(x) = \frac{1}{\pi \sqrt{x(1-x)}} \]
  • Circle PDF\[ f(x)={2\sqrt{r^2 - x^2}\over \pi r^2 }, \forall x \in [-r , r] \]
  • U-Quadratic PDF\[\alpha \left ( x - \beta \right )^2 \]
  • Standard Uniform PDF\[U(0,1) = f(x) = \begin{cases} {1} \mbox{ for } 0 \le x \le 1 \\ 0 \mbox{ for } x < 0 \mbox{ or } x > 1 \end{cases} \]
  • Zipf\[\frac{1/(k+q)^s}{H_{N,s}}\]
  • Inverse Gamma\[\frac{\beta^\alpha}{\Gamma(\alpha)} x^{-\alpha - 1} \exp \left(\frac{-\beta}{x}\right)\]
  • Fisher-Tippett\[\frac{z\,e^{-z}}{\beta}\!\]
    where \(z = e^{-\frac{x-\mu}{\beta}}\!\)
  • Gumbel\[f(x) = e^{-x} e^{-e^{-x}}.\]
  • HyperGeometric\[{{{m \choose k} {{N-m} \choose {n-k}}}\over {N \choose n}}\]
  • Log-Normal\[\frac{1}{x\sigma\sqrt{2\pi}}\exp\left[-\frac{\left(\ln(x)-\mu\right)^2}{2\sigma^2}\right]\]
  • Gilbrats\[\frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{\left(\ln(x)\right)^2}{2\sigma^2}\right]\]
  • Hyperbolic Secant\[\frac12 \; \operatorname{sech}\!\left(\frac{\pi}{2}\,x\right)\!\]
  • Gompertz\[b e^{-bx} e^{-\eta e^{-bx}}\left[1 + \eta\left(1 - e^{-bx}\right)\right]\]
  • Standard Cauchy\[ f(x; 0,1) = \frac{1}{\pi (1 + x^2)}. \!\]
  • Rectangular\[ f(x)=\frac{1}{n+1}.(x=0,1,...,n)\!\]
  • Beta-Binomial\[ f(x)=\frac{\Gamma(x+a)\Gamma(n-x+b)\Gamma(a+b)\Gamma(n+2)}{(n+1)\Gamma(a+b+n)\Gamma(a)\Gamma(b)\Gamma(x+1)\Gamma(n-x+1)}.(x=0,1,...,n)\!\]
  • Negative Hypergeometric\[ f(x)=\frac{\begin{pmatrix} n_1+x-1 \\ x \end{pmatrix} \begin{pmatrix} n_3-n_1+n_2-x-1 \\ n_2-x \end{pmatrix}}{\begin{pmatrix} n_3+n_2-1 \\ n_2 \end{pmatrix}}. (x=max(0,n_1+n_2-n_3),...,n_2)\!\]
  • Standard Power\[ f(x; \beta) = \beta x^{\beta - 1} \!\]
  • Power_Series\[ f(x; c; A(c)) = a(x) c^x / A(c). (x=(0,1,...), c>0, A(c)=\sum_{x}a(x) c^x) \!\]
  • Zeta\[ f(x)=\frac{1}{x^a \sum_{i=1}^{\infty}(\frac{1}{i})^a}. (x=1,2,...) \!\]
  • Logarithm\[ f(x)=\frac{-(1-c)^x}{x\log c}. (x=1,2,..., 0<c<1) \!\]
  • Beta_Pascal\[ f(x; a, b, n) = \binom{n-1+x}{x} \frac{B(n+a, b+x)}{B(a,b)}. (x=(0,1,...); a+b=n) \!\]
  • Gamma_Poisson\[ f(x; \alpha, \beta) = \frac{\Gamma(x+\beta) \alpha^x}{\Gamma(\beta) (1+\alpha)^{\beta+x} x!}.(x=(0,1,...); \alpha>0; \beta>0) \!\]
  • Pascal\[ f(x; p, n) = \binom{n-1+x}{x} p^n (1-p)^x. (x=(0,1,...,n); 0 \leq p \leq 1)\!\]
  • Polya\[ f(x; n, p, \beta) = \binom{n}{x} \frac{\prod_{j=0}^{x-1}(p+j\beta) \prod_{k=0}^{n-x-1}(1-p+k\beta)}{\prod_{i=0}^{n-1}(1+i\beta)}. (x=\{0,1,...,n\}) \!\]
  • Normal-Gamma\[ f(x, \tau; \mu, \lambda,\alpha,\beta) = \frac{\beta^\alpha \sqrt(\lambda)}{\Gamma(\alpha) \sqrt(2 \pi)} \tau^{\alpha-1/2} exp(-\beta \tau) exp(-\frac{\lambda \tau (x-\mu)^2}{2}).(\tau>0) \!\]
  • Discrete_Weibull\[ f(x; p, \beta) = (1-p)^{x^\beta}-(1-p)^{(x+1)^\beta}. (x=\{0,1,...\}) \!\]
  • Log Gamma\[ f(x)=[1/ \alpha^\beta \Gamma(\beta)]e^{\beta x}e^{-e^x/a}. (-\infty<x<\infty) \!\]
  • Generalized Gamma\[ f(x)=\frac{\gamma}{\alpha^{\gamma \beta}\Gamma(\beta)}x^{\gamma \beta-1}e^{-(x/\alpha)^\gamma}. (x>0) \!\]
  • Noncentral-Beta\[ f(x; \beta, \gamma, \delta) = \sum_{i=0}^{\infty}\frac{\Gamma(i+\beta+\gamma)}{\Gamma(\gamma) \Gamma(i+\beta)} \frac{exp(-\delta/2)}{i!} (\delta/2)^i x^{i+\beta-1} (1-x)^{\gamma-1}. (0 \leq x \leq 1). \!\]
  • Inverse Gausian\[ f(x)=\sqrt{\frac{\lambda}{2\pi x^3}}e^{-\frac{\lambda}{2\mu^2 x}(x-\mu)^2}. (x>0) \!\]
  • Noncentral_chi-square\[ f(x; n,\delta) = f(x; n,\delta) = \sum_{k=0}^{\infty}\frac{exp(-\delta/2) (\delta/2)^k}{k!}\frac{exp(-x/2) x^{(n+2k)/2-1}}{2^{(n+2k)/2} \Gamma(\frac{n+2k}{2})}. \!\]
  • Standard Wald\[ f(x)=\sqrt{\frac{\lambda}{2\pi x^3}}e^{-\frac{\lambda}{2x}(x-1)^2}. (x>0) \!\]
  • Inverted Beta\[ f(x)=\frac{x^{\beta-1}(1+x)^{-\beta-\gamma}}{B(\beta,\gamma)}. (x>0, \beta>1, \gamma>1) \!\]
  • Arctangent\[ f(x; \lambda, \phi)= \frac{\lambda}{[arctan(\lambda \phi)+\pi/2][1+\lambda^2 (x - \phi)^2]} (x \geq 0, -\infty < \lambda < \infty) \!\]
  • Makeham\[ f(x) = (\gamma + \delta\kappa^x)exp(-\gamma x-\frac{\delta (\kappa^x-1)}{log(\kappa)}). x>0 \!\]
  • Hypoexponential\[ f(x) = \sum_{i=1}^{n}(1/\alpha_i)exp(-x/\alpha_i)(\prod_{j=1,j\neq i}^{n}\frac{\alpha_i}{\alpha_i-\alpha_j}). x>0 \!\]
  • Doubly Noncentral t\[ \!\]
  • Hyperexponential\[ f(x) = \sum_{i=1}^{n}\frac{p_i}{\alpha_i}e^{-x/\alpha_i}. x>0 \!\]
  • Muth\[ f(x) = (e^{\kappa x}-\kappa)e^{-(1/\kappa)e^{\kappa x}+\kappa x+1/\kappa}. x>0 \!\]
  • Error\[ f(x) = \frac{exp[-(|x-a|/b)^{2/c}/2]}{b 2^{c/2+1}\Gamma(1+c/2)}. -\infty < x < \infty \!\]
  • Minimax\[ f(x) = \beta\gamma x^{\beta-1}(1-x^\beta)^{\gamma-1}. 0<x<1 \!\]
  • Noncentral F\[ f(x) = \sum_{i=0}^{\infty}\frac{\Gamma(\frac{2i+n_1+n_2}{2})(n_1/n_2)^{(2i+n_1)/2}x^{(2i+n_1-2)/2}e^{-\delta/2}(\delta/2)^i}{\Gamma(n_2/2)\Gamma(\frac{2i+n_1}{2})i!(1+\frac{n_1}{n_2}x)^{(2i+n_1+n_2)/2}}. x>0 \!\]
  • IDB\[ f(x) = \frac{(1+\kappa x)\delta x+\gamma}{(1+\kappa x)^{\gamma/\kappa+1}}e^{-\delta x^2/2}. x>0 \!\]
  • Standard Power\[ f(x) = \beta x^{\beta-1}. 0<x<1 \!\]
  • Rayleigh\[ f(x) = \frac{2x}{\alpha}e^{-x^2/\alpha}. x>0 \!\]
  • Standard Triangular\[ f(x) = \begin{cases} x+1, -1<x<0 \\ 1 - x, 0 \leq x<1 \end{cases} \!\]
  • Doubly noncentral F\[ f(x)= \sum_{j=0}^{\infty}\sum_{k=0}^{\infty}[\frac{e^{-\delta/2}(\frac{1}{2}\delta)^j}{j!}][\frac{e^{-\gamma/2}(\frac{1}{2}\gamma)^k}{k!}]\times n_1^{(n_1/2)+j}n_2^{(n_2/2)+k}x^{(n_1/2)+j-1}\times (n_2+n_1 x)^{-\frac{1}{2}(n_1+n_2)-j-k}\times [B(\frac{1}{2}n_1+j,\frac{1}{2}n_2+k)]^{-1}. x>0 \!\]
  • Power\[ f(x)=\frac{\beta x^{\beta-1}}{\alpha^\beta}. 0<x<\alpha \!\]
  • Weibull\[ f(x)=(\beta/\alpha)x^{\beta-1}exp[-(1/\alpha)x^\beta]. x>0 \!\]
  • Log-logistic\[ f(x)=\frac{\lambda \kappa(\lambda x)^{\kappa-1}}{[1+(\lambda x)^\kappa]^2}. x>0 \!\]
  • TSP\[ f(x) = \begin{cases} \frac{n}{b-a}(\frac{x-a}{m-a})^{n-1}, a<x\le m \\ \frac{n}{b-a}(\frac{b-x}{b-m})^{n-1}, m\le x<b \end{cases} \!\]
  • Extreme value\[ f(x)=(\beta/\alpha)e^{x\beta-e^{x\beta}/\alpha}. -\infty<x<\infty \!\]
  • Lomax\[ f(x)=\frac{\lambda \kappa}{(1+\lambda x)^{\kappa+1}}. x>0 \!\]
  • von Mises\[ f(x)=\frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}. 0<x<2\pi, 0<\mu<2\pi) \!\]
  • Generalized Pareto\[ f(x)=(\gamma+\frac{\kappa}{x+\delta})(1+x/\delta)^{-\kappa}e^{-\gamma x}. x>0 \!\]
  • Triangular\[ f(x)=\begin{cases} \frac{2(x-a)}{(b-a)(m-a)}, a<x<m \\ \frac{2(b-x)}{(b-a)(b-m)}, m \le x<b \end{cases}. a<m<b>0 \!\]
  • Lévy distribution\[ L_{\alpha ,\gamma } (y)={1\over \pi } \int _{0}^{\infty }e^{-\gamma q^{\alpha } } \cos (qy) dq , y\in {\rm R} , \gamma >0 , 0<\alpha <2 \]
  • Modified Power Series distributon\[ P(X=x)={a(x)\left\{u(c)\right\}^{x} \over A(c)} \] where \( A(c)=\sum _{x}a(x)\left\{u(c)\right\}^{x} ,a(x)\ge 0 \)
  • Positive binomial distribution\[ P(X=x)=\binom{n}{x}{p^{x} q^{n-x} \over (1-q^{n} )} \] where \( x=1,2,...,n \)
  • Basic Lagrangian distribution of the first kind (BLD1)\[ P(X=x)={1\over x!} \left[{\partial ^{x-1} \over \partial z^{x-1} } (g(z))^{x} \right]_{z=0} \] where \( g(z) \) is pgf , \( g(0) \) is not 0
  • General Basic Lagrangian distribution of the first kind (GLD1)\[ P(X=0)=f(0) , P(X=x)={1\over x!} \left[{\partial ^{x-1} \over \partial z^{x-1} } \left\{(g(z))^{x} {\partial f(z)\over \partial z} \right\}\right]_{z=0} , x>0\] Where f(z) and g(z) are pgf , \(\left[{\partial ^{x-1} \over \partial z^{x-1} } \left\{(g(z))^{x} {\partial f(z)\over \partial z} \right\}\right]_{z=0} >0\) for \(x\ge 1\)
  • Binomial-delta distribution\[ P(X=x)={n\over x}\binom[[:Template:Mx]]{x-n}p^{x-n} q^{n+mx-x} \] for \(x\ge n\)
  • Binomial-Poisson distribution\[ P(X=x)=e^{-M} {(Mq^{m} )^{x} \over x!} {}_{2} F{}_{0} [1-x,-mx;{p\over Mq} ] \] , for \(x\ge 0 \)
  • Binomial-negative-binomial distribution\[ P(X=x)={\Gamma (k+x)\over x!\Gamma (x)} Q^{-k} \left({Pq^{m} \over Q} \right)^{x} {}_{2} F_{1} [1-x,-mx;1-x-k;{-pQ\over qP} ] \] for \(x\ge 0\)
  • _Distribution.html Poisson-delta distribution\[ P(X=x)={n\over x} {e^{-\theta x} (\theta x)^{x-n} \over (x-n)} \] for \(x\ge n \)
  • Poisson-Poisson distribution(also called "Generalized Poisson distribution")\[ P(X=x)=M(M+\theta x)^{x-1} e^{-(M+\theta x)} /x! \] for \(x\ge 0 \)
  • Poisson-binomial distribution\[ P(X=x)={(\theta x)^{x-1} \over x!} e^{-\theta x} npq^{n-1} {}_{2} F_{0} [1-x,1-n;{p\over \theta qx} ] , x\ge 1\]
  • Poisson-negative-binomial distribution\[ P(X=x)={(\theta x)^{x-1} \over x!} e^{-\theta x} kPQ^{-k-1} {}_{2} F_{0} [1-x,1+k;{-P\over \theta Qx} ] , x\ge 1\]
  • Negative-binomial-delta distribution\[ P(X=x)={n\over x} {\Gamma (kx+x-1)\over (x-n)!\Gamma (kx)} \left({P\over Q} \right)^{x-n} Q^{-kx} , x\ge n \]
  • Negative-binomial-Poisson distribution\[ P(X=x)={e^{-M} M^{x} \over x!} Q^{-kx} {}_{2} F_{0} [1-x,kx;-;{-P\over MQ} ] \] , for \(x\ge 0\)
  • Negative-binomial-binomial distribution\[ P(X=0)=q^{n} \] , \(P(X=x)=npq^{n-1} {\Gamma (kx+x-1)\over x!\Gamma (kx)} \left({P\over Q} \right)^{x-1} Q^{-kx} {}_{2} F_{1} [1-x,1-n;2-x-kx;{-pQ\over Pq} ] \) for \(x\ge 1\)
  • Negative-binomial-negative-binomial distribution\[ P(X=x)=(Q')^{-M} \left({P'\over Q'Q^{k} } \right)^{x} {\Gamma (M+x)\over x!\Gamma (M)} {}_{2} F_{1} [1-x,kx;1-M-x;{PQ'\over P'Q} ] \] for \(x\ge 1\)
  • Weight binomial distribution\[ P(X=x)=w(x)p_{x} /\sum _{x}^{}w(x)p_{x}\]
  • Positive Poisson distribution (conditional Poisson distribution)\[ P(X=x)=(e^{\theta } -1)^{-1} \theta ^{x} /x! , x=1,2,......\]
  • Left-truncated Poisson distribution\[ P(X=x)={e^{-\theta } \theta ^{x} \over x!} \left[1-e^{-\theta } \sum _{j=0}^{r_{1} -1}{\theta ^{j} \over j!} \right]^{-1} , x=r_{1} ,r_{1} +1,...\]
  • Right-truncated Poisson distribution\[ P(X=x)={\theta ^{x} \over x!} \left[\sum _{j=0}^{r_{2} }{\theta ^{j} \over j!} \right]^{-1} , x=0,1,...,r_{2}\]
  • Doubly-truncated Poisson distribution\[ P(X=x)={\theta ^{x} \over x!} \left[\sum _{j=r_{1} }^{r_{2} }{\theta ^{j} \over j!} \right]^{-1} , x=r_{1} ,r_{1} +1,...,r_{2} , 0<r_{1} <r_{2}\]
  • Misrecorded Poisson distribution\[ P(X=0)=\omega +(1-\omega )e^{-\theta }, P(X=x)=(1-\omega ){e^{-\theta } \theta ^{x} \over x!} , x\ge 1\]

Transformations




"-----


Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif