Difference between revisions of "AP Statistics Curriculum 2007 Gamma"

From SOCR
Jump to: navigation, search
m (Normal Approximation to Gamma distribution)
m (Normal Approximation to Gamma distribution)
Line 63: Line 63:
 
===Normal Approximation to Gamma distribution===
 
===Normal Approximation to Gamma distribution===
  
Note that if \( \{X_1,X_2,X_3,\cdots \}\) is a sequence of independent [[AP_Statistics_Curriculum_2007_Exponential|Exponential random variables]] then \(Y_k = \sum_{i=1}^k{X_i} \) is a [http://www.math.uah.edu/stat/special/Gamma.html random variable with gamma distribution with some shape parameter], k (positive integer) and scale parameter b. By the [[AP_Statistics_Curriculum_2007_Limits_CLT|central limit theorem]], if k is large, then gamma distribution can be approximated by the normal distribution with mean \(\mu=kb\) and variance \(\sigma =kb^2\). That is, the distribution of the variable Z_k={{Y_k-kb}\over{\sqrt{k}b}}\) tends to the standard normal distribution as <math>k\longrightarrow \infty</math>.
+
Note that if \( \{X_1,X_2,X_3,\cdots \}\) is a sequence of independent [[AP_Statistics_Curriculum_2007_Exponential|Exponential random variables]] then \(Y_k = \sum_{i=1}^k{X_i} \) is a [http://www.math.uah.edu/stat/special/Gamma.html random variable with gamma distribution with some shape parameter], k (positive integer) and scale parameter b. By the [[AP_Statistics_Curriculum_2007_Limits_CLT|central limit theorem]], if k is large, then gamma distribution can be approximated by the normal distribution with mean \(\mu=kb\) and variance \(\sigma =kb^2\). That is, the distribution of the variable \(_k={{Y_k-kb}\over{\sqrt{k}b}}\) tends to the standard normal distribution as <math>k\longrightarrow \infty</math>.
  
 
<hr>
 
<hr>

Revision as of 12:03, 23 June 2012

General Advance-Placement (AP) Statistics Curriculum - Gamma Distribution

Gamma Distribution

Definition: Gamma distribution is a distribution that arises naturally in processes for which the waiting times between events are relevant. It can be thought of as a waiting time between Poisson distributed events.


Probability density function: The waiting time until the hth Poisson event with a rate of change \(\lambda\) is

\[P(x)=\frac{\lambda(\lambda x)^{h-1}}{(h-1)!}{e^{-\lambda x}}\]


For \(X\sim \operatorname{Gamma}(k,\theta)\!\), where \(k=h\) and \(\theta=1/\lambda\), the gamma probability density function is given by

\[\frac{x^{k-1}e^{-x/\theta}}{\Gamma(k)\theta^k}\]

where

  • e is the natural number (e = 2.71828…)
  • k is the number of occurrences of an event
  • if k is a positive integer, then \(\Gamma(k)=(k-1)!\) is the gamma function
  • \(\theta=1/\lambda\) is the mean number of events per time unit, where \(\lambda\) is the mean time between events. For example, if the mean time between phone calls is 2 hours, then you would use a gamma distribution with \(\theta\)=1/2=0.5. If we want to find the mean number of calls in 5 hours, it would be 5 \(\times\) 1/2=2.5.
  • x is a random variable


Cumulative density function: The gamma cumulative distribution function is given by

\[\frac{\gamma(k,x/\theta)}{\Gamma(k)}\]

where

  • if k is a positive integer, then \(\Gamma(k)=(k-1)!\) is the gamma function
  • \(\textstyle\gamma(k,x/\theta)=\int_0^{x/\theta}t^{k-1}e^{-t}dt\)


Moment generating function: The gamma moment-generating function is

\[M(t)=(1-\theta t)^{-k}\!\]


Expectation: The expected value of a gamma distributed random variable x is

\[E(X)=k\theta\!\]


Variance: The gamma variance is

\[Var(X)=k\theta^2\!\]

Applications

The gamma distribution can be used a range of disciplines including queuing models, climatology, and financial services. Examples of events that may be modeled by gamma distribution include:

  • The amount of rainfall accumulated in a reservoir
  • The size of loan defaults or aggregate insurance claims
  • The flow of items through manufacturing and distribution processes
  • The load on web servers
  • The many and varied forms of telecom exchange

The gamma distribution is also used to model errors in a multi-level Poisson regression model because the combination of a Poisson distribution and a gamma distribution is a negative binomial distribution.

Example

Suppose you are fishing and you expect to get a fish once every 1/2 hour. Compute the probability that you will have to wait between 2 to 4 hours before you catch 4 fish.

One fish every 1/2 hour means we would expect to get \(\theta=1 / 0.5=2\) fish every hour on average. Using \(\theta=2\) and \(k=4\), we can compute this as follows:

\[P(2\le X\le 4)=\sum_{x=2}^4\frac{x^{4-1}e^{-x/2}}{\Gamma(4)2^4}=0.12388\]

The figure below shows this result using SOCR distributions

Gamma.jpg


Normal Approximation to Gamma distribution

Note that if \( \{X_1,X_2,X_3,\cdots \}\) is a sequence of independent Exponential random variables then \(Y_k = \sum_{i=1}^k{X_i} \) is a random variable with gamma distribution with some shape parameter, k (positive integer) and scale parameter b. By the central limit theorem, if k is large, then gamma distribution can be approximated by the normal distribution with mean \(\mu=kb\) and variance \(\sigma =kb^2\). That is, the distribution of the variable \(_k={{Y_k-kb}\over{\sqrt{k}b}}\) tends to the standard normal distribution as \(k\longrightarrow \infty\).




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif