Difference between revisions of "Formulas"

From SOCR
Jump to: navigation, search
(Transformations)
(Transformations)
Line 157: Line 157:
 
* [http://en.wikipedia.org/wiki/Gamma_Poisson Poisson to Gamma Poisson]: <math> \mu \sim gamma \ </math>
 
* [http://en.wikipedia.org/wiki/Gamma_Poisson Poisson to Gamma Poisson]: <math> \mu \sim gamma \ </math>
 
* [http://en.wikipedia.org/wiki/Rectangular Discrete uniform to Rectangular]: <math> a=0, b=n\ </math>
 
* [http://en.wikipedia.org/wiki/Rectangular Discrete uniform to Rectangular]: <math> a=0, b=n\ </math>
* [http://en.wikipedia.org/wiki/Rectangualr beta binomial to rectangular]: <math> \ </math>
+
* [http://en.wikipedia.org/wiki/Rectangualr beta binomial to rectangular]: <math> a=b=1 \ </math>
* [http://en.wikipedia.org/wiki/Negative_hypergeometric beta binomial to negative hypergeometric]: <math> \ </math>
+
* [http://en.wikipedia.org/wiki/Negative_hypergeometric beta binomial to negative hypergeometric]: <math> n=n_1, a=n_2, b=n_3 \ </math>
* [http://en.wikipedia.org/wiki/Zeta Zipf to Zeta]: <math> \ </math>
+
* [http://en.wikipedia.org/wiki/Zeta Zipf to Zeta]: <math> n\to\infty\ </math>
* [http://en.wikipedia.org/wiki/Logarithm Power series to Logarithm]: <math> \ </math>
+
* [http://en.wikipedia.org/wiki/Logarithm Power series to Logarithm]: <math> A(c)=-log(1-c)\ </math>
* [http://en.wikipedia.org/wiki/Poisson Power series to Poisson]: <math> \ </math>
+
* [http://en.wikipedia.org/wiki/Poisson Power series to Poisson]: <math> A(c)=e^c, \mu=c\ </math>
 
* [http://en.wikipedia.org/wiki/Beta_Pascal Pascal to Beta pascal]: <math> \ </math>
 
* [http://en.wikipedia.org/wiki/Beta_Pascal Pascal to Beta pascal]: <math> \ </math>
 
* [http://en.wikipedia.org/wiki/Poisson pascal to poisson]: <math> \ </math>
 
* [http://en.wikipedia.org/wiki/Poisson pascal to poisson]: <math> \ </math>

Revision as of 14:23, 6 May 2010

Probability Density Functions (PDFs)

  • Standard Normal PDF\[f(x)= {e^{-x^2} \over \sqrt{2 \pi}}\]
  • General Normal PDF\[f(x)= {e^{{-(x-\mu)^2} \over 2\sigma^2} \over \sqrt{2 \pi\sigma^2}}\]
  • Chi-Square PDF\[\frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}\,\]
  • Gamma PDF\[x^{k-1} \frac{\exp{\left(-x/\theta\right)}}{\Gamma(k)\,\theta^k}\,\!\]
  • Beta PDF\[ \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\, x^{\alpha-1}(1-x)^{\beta-1}\!\]
  • Student's T PDF\[\frac{\Gamma(\frac{\nu+1}{2})} {\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \left(1+\frac{x^2}{\nu} \right)^{-(\frac{\nu+1}{2})}\!\]
  • Poisson PDF\[\frac{e^{-\lambda} \lambda^k}{k!}\!\]
  • Chi PDF\[\frac{2^{1-k/2}x^{k-1}e^{-x^2/2}}{\Gamma(k/2)}\]
  • Cauchy PDF\[\frac{1}{\pi\gamma \left[1 + \left(\frac{x-x_0}{\gamma}\right)^2\right]}\]
  • Exponential PDF\[ \lambda e^{-\lambda x},\; x \ge 0\]
  • F Distribution PDF\[ \frac {(\frac {d_1 x}{d_1 x + d_2})^{ d_1/2} ( 1 - \frac {d_1 x} {d_1 x + d2}) ^ {d_2/2}} { xB(d_1/2 , d_2/2) } \]
  • Bernoulli PMF\[ f(k;p) \begin{cases} \mbox{p if k = 1,} \\ \mbox{1 - p if k = 0,} \\ \mbox{0 otherwise} \end{cases} \]
  • Binomial PMF\[ \begin{pmatrix} n \\ k \end{pmatrix} p^k (1-p)^{n-k}\]
  • Multinomial PMF\[f(x_1, x_2, \cdots, x_k)={n\choose x_1,x_2,\cdots, x_k}p_1^{x_1}p_2^{x_2}\cdots p_k^{x_k}\], where \(x_1+x_2+\cdots+x_k=n\), \(p_1+p_2+\cdots+p_k=1\), and \(0 \le x_i \le n, 0 \le p_i \le 1\).
  • Negative Binomial PMF\[ \begin{pmatrix} k + r - 1 \\ k \end{pmatrix} p^r(1-p)^k \]
  • Negative-Multinomial Binomial PMF\[ P(k_o, \cdots, k_r) = \Gamma(k_o + \sum_{i=1}^r{k_i}) \frac{p_o^{k_o}}{\Gamma(k_o)} \prod_{i=1}^r{\frac{p_i^{k_i}}{k_i!}} \]
  • Geometric PMF\[ \begin{pmatrix} 1-p \end{pmatrix} ^{k-1}p \]
  • Erlang PDF\[ \frac {\lambda x^{k-1}e^{-\lambda x}} {(k-1)!} \]
  • Laplace PDF\[ \frac {1}{2b} \exp (- \frac{|x-\mu|}{b}) \]
  • Continuous Uniform PDF\[ f(x) = \begin{cases} \frac{1}{b-a} \mbox{ for } a \le x \le b \\ 0 \mbox{ for } x < a \mbox{ or } x > b \end{cases} \]
  • Discrete Uniform PMF\[ f(x) = \begin{cases} 1/n \mbox{ for } a \le x \le b, \\ 0 \mbox{ otherwise} \end{cases} \]
  • Logarithmic PDF\[ f(k) = \frac{-1}{ln(1-p)} \frac{p^k}{k} \]
  • Logistic PDF\[ f(x;u,s) = \frac{e^{-(x-\mu)/s}} {s(1+e^{-(x-\mu)/s})^2} \]
  • Logistic-Exponential PDF\[ f(x;\beta) = \frac { \beta e^x(e^x - 1)^{\beta-1}} {(1+(e^x-1)^\beta))^2} \mbox{ }\mbox{ }x, \beta > 0 \]
  • Power Function PDF\[ f(x) = \frac {\alpha(x-a)^{\alpha-1}} {(b-a)^\alpha} \]
  • Benford's Law\[ P(d) = \log_b(d + 1)- \log_b(d) = \log_b(\frac{d + 1}{d}) \]
  • Pareto PDF\[ \frac {kx^k_m} {x^{k+1}} \]
  • Non-Central Student T PDF\[ f(t)=\frac{\nu^{\nu/2}e^{-\nu\mu^2/2(t^2+\nu)}} {\sqrt{\pi}\Gamma(\nu/2)2^{(\nu-1)/2}(t^2+\nu)^{(\nu+1)/2}} \times\int\limits_0^\infty x^\nu\exp\left[-\frac{1}{2}\left(x-\frac{\mu t}{\sqrt{t^2+\nu}}\right)^2\right]dx \]
  • ArcSine PDF\[ f(x) = \frac{1}{\pi \sqrt{x(1-x)}} \]
  • Circle PDF\[ f(x)={2\sqrt{r^2 - x^2}\over \pi r^2 }, \forall x \in [-r , r] \]
  • U-Quadratic PDF\[\alpha \left ( x - \beta \right )^2 \]
  • Standard Uniform PDF\[U(0,1) = f(x) = \begin{cases} {1} \mbox{ for } 0 \le x \le 1 \\ 0 \mbox{ for } x < 0 \mbox{ or } x > 1 \end{cases} \]
  • Zipf\[\frac{1/(k+q)^s}{H_{N,s}}\]
  • Inverse Gamma\[\frac{\beta^\alpha}{\Gamma(\alpha)} x^{-\alpha - 1} \exp \left(\frac{-\beta}{x}\right)\]
  • Fisher-Tippett\[\frac{z\,e^{-z}}{\beta}\!\]
    where \(z = e^{-\frac{x-\mu}{\beta}}\!\)
  • Gumbel\[f(x) = e^{-x} e^{-e^{-x}}.\]
  • HyperGeometric\[{{{m \choose k} {{N-m} \choose {n-k}}}\over {N \choose n}}\]
  • Log-Normal\[\frac{1}{x\sigma\sqrt{2\pi}}\exp\left[-\frac{\left(\ln(x)-\mu\right)^2}{2\sigma^2}\right]\]
  • Gilbrats\[\frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{\left(\ln(x)\right)^2}{2\sigma^2}\right]\]
  • Hyperbolic Secant\[\frac12 \; \operatorname{sech}\!\left(\frac{\pi}{2}\,x\right)\!\]
  • Gompertz\[b e^{-bx} e^{-\eta e^{-bx}}\left[1 + \eta\left(1 - e^{-bx}\right)\right]\]
  • Standard Cauchy\[ f(x; 0,1) = \frac{1}{\pi (1 + x^2)}. \!\]
  • Rectangular\[ f(x)=\frac{1}{n+1}.(x=0,1,...,n)\!\]
  • Beta-Binomial\[ f(x)=\frac{\Gamma(x+a)\Gamma(n-x+b)\Gamma(a+b)\Gamma(n+2)}{(n+1)\Gamma(a+b+n)\Gamma(a)\Gamma(b)\Gamma(x+1)\Gamma(n-x+1)}.(x=0,1,...,n)\!\]
  • Negative Hypergeometric\[ f(x)=\frac{\begin{pmatrix} n_1+x-1 \\ x \end{pmatrix} \begin{pmatrix} n_3-n_1+n_2-x-1 \\ n_2-x \end{pmatrix}}{\begin{pmatrix} n_3+n_2-1 \\ n_2 \end{pmatrix}}. (x=max(0,n_1+n_2-n_3),...,n_2)\!\]
  • Standard Power\[ f(x; \beta) = \beta x^{\beta - 1} \!\]
  • Power_Series\[ f(x; c; A(c)) = a(x) c^x / A(c). (x=(0,1,...), c>0, A(c)=\sum_{x}a(x) c^x) \!\]
  • Zeta\[ f(x)=\frac{1}{x^a \sum_{i=1}^{\infty}(\frac{1}{i})^a}. (x=1,2,...) \!\]
  • Logarithm\[ f(x)=\frac{-(1-c)^x}{x\log c}. (x=1,2,..., 0<c<1) \!\]
  • Beta_Pascal\[ f(x; a, b, n) = \binom{n-1+x}{x} \frac{B(n+a, b+x)}{B(a,b)}. (x=(0,1,...); a+b=n) \!\]
  • Gamma_Poisson\[ f(x; \alpha, \beta) = \frac{\Gamma(x+\beta) \alpha^x}{\Gamma(\beta) (1+\alpha)^{\beta+x} x!}.(x=(0,1,...); \alpha>0; \beta>0) \!\]
  • Pascal\[ f(x; p, n) = \binom{n-1+x}{x} p^n (1-p)^x. (x=(0,1,...,n); 0 \leq p \leq 1)\!\]
  • Polya\[ f(x; n, p, \beta) = \binom{n}{x} \frac{\prod_{j=0}^{x-1}(p+j\beta) \prod_{k=0}^{n-x-1}(1-p+k\beta)}{\prod_{i=0}^{n-1}(1+i\beta)}. (x=\{0,1,...,n\}) \!\]
  • Normal-Gamma\[ f(x, \tau; \mu, \lambda,\alpha,\beta) = \frac{\beta^\alpha \sqrt(\lambda)}{\Gamma(\alpha) \sqrt(2 \pi)} \tau^{\alpha-1/2} exp(-\beta \tau) exp(-\frac{\lambda \tau (x-\mu)^2}{2}).(\tau>0) \!\]
  • Discrete_Weibull\[ f(x; p, \beta) = (1-p)^{x^\beta}-(1-p)^{(x+1)^\beta}. (x=\{0,1,...\}) \!\]
  • Log Gamma\[ f(x)=[1/ \alpha^\beta \Gamma(\beta)]e^{\beta x}e^{-e^x/a}. (-\infty<x<\infty) \!\]
  • Generalized Gamma\[ f(x)=\frac{\gamma}{\alpha^{\gamma \beta}\Gamma(\beta)}x^{\gamma \beta-1}e^{-(x/\alpha)^\gamma}. (x>0) \!\]
  • Noncentral-Beta\[ f(x; \beta, \gamma, \delta) = \sum_{i=0}^{\infty}\frac{\Gamma(i+\beta+\gamma)}{\Gamma(\gamma) \Gamma(i+\beta)} \frac{exp(-\delta/2)}{i!} (\delta/2)^i x^{i+\beta-1} (1-x)^{\gamma-1}. (0 \leq x \leq 1). \!\]
  • Inverse Gausian\[ f(x)=\sqrt{\frac{\lambda}{2\pi x^3}}e^{-\frac{\lambda}{2\mu^2 x}(x-\mu)^2}. (x>0) \!\]
  • Noncentral_chi-square\[ f(x; n,\delta) = f(x; n,\delta) = \sum_{k=0}^{\infty}\frac{exp(-\delta/2) (\delta/2)^k}{k!}\frac{exp(-x/2) x^{(n+2k)/2-1}}{2^{(n+2k)/2} \Gamma(\frac{n+2k}{2})}. \!\]
  • Standard Wald\[ f(x)=\sqrt{\frac{\lambda}{2\pi x^3}}e^{-\frac{\lambda}{2x}(x-1)^2}. (x>0) \!\]
  • Inverted Beta\[ f(x)=\frac{x^{\beta-1}(1+x)^{-\beta-\gamma}}{B(\beta,\gamma)}. (x>0, \beta>1, \gamma>1) \!\]
  • Arctangent\[ f(x; \lambda, \phi)= \frac{\lambda}{[arctan(\lambda \phi)+\pi/2][1+\lambda^2 (x - \phi)^2]} (x \geq 0, -\infty < \lambda < \infty) \!\]
  • Makeham\[ f(x) = (\gamma + \delta\kappa^x)exp(-\gamma x-\frac{\delta (\kappa^x-1)}{log(\kappa)}). x>0 \!\]
  • Hypoexponential\[ f(x) = \sum_{i=1}^{n}(1/\alpha_i)exp(-x/\alpha_i)(\prod_{j=1,j\neq i}^{n}\frac{\alpha_i}{\alpha_i-\alpha_j}). x>0 \!\]
  • Doubly Noncentral t\[ \!\]
  • Hyperexponential\[ f(x) = \sum_{i=1}^{n}\frac{p_i}{\alpha_i}e^{-x/\alpha_i}. x>0 \!\]
  • Muth\[ f(x) = (e^{\kappa x}-\kappa)e^{-(1/\kappa)e^{\kappa x}+\kappa x+1/\kappa}. x>0 \!\]
  • Error\[ f(x) = \frac{exp[-(|x-a|/b)^{2/c}/2]}{b 2^{c/2+1}\Gamma(1+c/2)}. -\infty < x < \infty \!\]
  • Minimax\[ f(x) = \beta\gamma x^{\beta-1}(1-x^\beta)^{\gamma-1}. 0<x<1 \!\]
  • Noncentral F\[ f(x) = \sum_{i=0}^{\infty}\frac{\Gamma(\frac{2i+n_1+n_2}{2})(n_1/n_2)^{(2i+n_1)/2}x^{(2i+n_1-2)/2}e^{-\delta/2}(\delta/2)^i}{\Gamma(n_2/2)\Gamma(\frac{2i+n_1}{2})i!(1+\frac{n_1}{n_2}x)^{(2i+n_1+n_2)/2}}. x>0 \!\]
  • IDB\[ f(x) = \frac{(1+\kappa x)\delta x+\gamma}{(1+\kappa x)^{\gamma/\kappa+1}}e^{-\delta x^2/2}. x>0 \!\]
  • Standard Power\[ f(x) = \beta x^{\beta-1}. 0<x<1 \!\]
  • Rayleigh\[ f(x) = \frac{2x}{\alpha}e^{-x^2/\alpha}. x>0 \!\]
  • Standard Triangular\[ f(x) = \begin{cases} x+1, -1<x<0 \\ 1 - x, 0 \leq x<1 \end{cases} \!\]
  • Doubly noncentral F\[ f(x)= \sum_{j=0}^{\infty}\sum_{k=0}^{\infty}[\frac{e^{-\delta/2}(\frac{1}{2}\delta)^j}{j!}][\frac{e^{-\gamma/2}(\frac{1}{2}\gamma)^k}{k!}]\times n_1^{(n_1/2)+j}n_2^{(n_2/2)+k}x^{(n_1/2)+j-1}\times (n_2+n_1 x)^{-\frac{1}{2}(n_1+n_2)-j-k}\times [B(\frac{1}{2}n_1+j,\frac{1}{2}n_2+k)]^{-1}. x>0 \!\]
  • Power\[ f(x)=\frac{\beta x^{\beta-1}}{\alpha^\beta}. 0<x<\alpha \!\]
  • Weibull\[ f(x)=(\beta/\alpha)x^{\beta-1}exp[-(1/\alpha)x^\beta]. x>0 \!\]
  • Log-logistic\[ f(x)=\frac{\lambda \kappa(\lambda x)^{\kappa-1}}{[1+(\lambda x)^\kappa]^2}. x>0 \!\]
  • TSP\[ f(x) = \begin{cases} \frac{n}{b-a}(\frac{x-a}{m-a})^{n-1}, a<x\le m \\ \frac{n}{b-a}(\frac{b-x}{b-m})^{n-1}, m\le x<b \end{cases} \!\]
  • Extreme value\[ f(x)=(\beta/\alpha)e^{x\beta-e^{x\beta}/\alpha}. -\infty<x<\infty \!\]
  • Lomax\[ f(x)=\frac{\lambda \kappa}{(1+\lambda x)^{\kappa+1}}. x>0 \!\]
  • von Mises\[ f(x)=\frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}. 0<x<2\pi, 0<\mu<2\pi) \!\]
  • Generalized Pareto\[ f(x)=(\gamma+\frac{\kappa}{x+\delta})(1+x/\delta)^{-\kappa}e^{-\gamma x}. x>0 \!\]
  • Triangular\[ f(x)=\begin{cases} \frac{2(x-a)}{(b-a)(m-a)}, a<x<m \\ \frac{2(b-x)}{(b-a)(b-m)}, m \le x<b \end{cases}. a<m<b>0 \!\]

Transformations




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif