Difference between revisions of "AP Statistics Curriculum 2007 Limits Bin2HyperG"

From SOCR
Jump to: navigation, search
 
Line 2: Line 2:
  
 
=== Binomial Approximation to HyperGeometric Distribution===
 
=== Binomial Approximation to HyperGeometric Distribution===
Example on how to attach images to Wiki documents in included below (this needs to be replaced by an appropriate figure for this section)!
+
Suppose [[AP_Statistics_Curriculum_2007_Distrib_Dists | <math>X \sim Hypergeometric(m, N, n)</math>]] and <math>p=m/N</math>.
<center>[[Image:AP_Statistics_Curriculum_2007_IntroVar_Dinov_061407_Fig1.png|500px]]</center>
 
  
===Approach===
+
*If <math>n=1</math> then <math>X</math> has a [[AP_Statistics_Curriculum_2007_Distrib_Binomial  | Bernoulli distribution]] with parameter <math>p</math>.
Models & strategies for solving the problem, data understanding & inference.  
 
  
* TBD
+
*If <math>N</math> and <math>m</math> are large compared to <math>n</math> and <math>p</math> is not close to 0 or 1, then <math>P(X \le x) \approx P(Y \le x)</math>, where <math>Y</math> has a [[AP_Statistics_Curriculum_2007_Distrib_Binomial  | Binomial(<math>n</math>, <math>p</math>) distribution]].
 
 
===Model Validation===
 
Checking/affirming underlying assumptions.  
 
 
 
* TBD
 
 
 
===Computational Resources: Internet-based SOCR Tools===
 
* TBD
 
  
 
===Examples===
 
===Examples===
Computer simulations and real observed data.  
+
An urn contains 50 marbles (35 green and 15 white). Fifteen marbles are selected without replacement.  Find the probability that exactly 10 out of the 15 selected are green marbles.  The answer to this question can be found using the formula:
 +
<math> P(X=10)=\frac{{35 \choose 10}{15 \choose 5}}{{50 \choose 15}}=0.2449. </math>  Using SOCR simply enter population size 50, sample size 15, and number of good objects 35, to get the figure below.
 +
<center>[[Image: SOCR_Activities_ExploreDistributions_Christou_figure2.jpg|600px]]</center>
  
* TBD
+
Now, select without replacement only 2 marbles.  Compute the exact probability that 1 green marble is obtained. This is equal to
   
+
<math> P(X=1)=\frac{{35 \choose 1}{15 \choose 1}}{{50 \choose 2}}=0.4286. </math>  This is also shown on the figure below.
===Hands-on activities===
+
<center>[[Image: SOCR_Activities_ExploreDistributions_Christou_figure3.jpg|600px]]</center>
Step-by-step practice problems.  
 
  
* TBD
+
We will approximate the probability of obtaining 1 green marble using Binomial as follows.  Select the SOCR Binomial distribution and choose number of trials 2 and probablity of success <math> p=\frac{35}{50}=0.7 </math>.  Compare the figure below with the figure above.  They are almost the same!  Why?  Using the Binomial formula we can compute the approximate probability of observing 1 green marble as <math> P(X=1)={2 \choose 1}0.70^10.30^1=0.42 </math> (very close to the exact probability, <b>0.4286</b>).
 +
<center>[[Image: SOCR_Activities_ExploreDistributions_Christou_figure4.jpg|600px]]</center>
  
 
<hr>
 
<hr>

Revision as of 20:47, 2 February 2008

General Advance-Placement (AP) Statistics Curriculum - Binomial Approximation to HyperGeometric Distribution

Binomial Approximation to HyperGeometric Distribution

Suppose \(X \sim Hypergeometric(m, N, n)\) and \(p=m/N\).

Examples

An urn contains 50 marbles (35 green and 15 white). Fifteen marbles are selected without replacement. Find the probability that exactly 10 out of the 15 selected are green marbles. The answer to this question can be found using the formula\[ P(X=10)=\frac{{35 \choose 10}{15 \choose 5}}[[:Template:50 \choose 15]]=0.2449. \] Using SOCR simply enter population size 50, sample size 15, and number of good objects 35, to get the figure below.

SOCR Activities ExploreDistributions Christou figure2.jpg

Now, select without replacement only 2 marbles. Compute the exact probability that 1 green marble is obtained. This is equal to \( P(X=1)=\frac{{35 \choose 1}{15 \choose 1}}[[:Template:50 \choose 2]]=0.4286. \) This is also shown on the figure below.

SOCR Activities ExploreDistributions Christou figure3.jpg

We will approximate the probability of obtaining 1 green marble using Binomial as follows. Select the SOCR Binomial distribution and choose number of trials 2 and probablity of success \( p=\frac{35}{50}=0.7 \). Compare the figure below with the figure above. They are almost the same! Why? Using the Binomial formula we can compute the approximate probability of observing 1 green marble as \( P(X=1)={2 \choose 1}0.70^10.30^1=0.42 \) (very close to the exact probability, 0.4286).

SOCR Activities ExploreDistributions Christou figure4.jpg

References

  • TBD



Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif