AP Statistics Curriculum 2007 Distrib Multinomial

From SOCR
Revision as of 18:38, 4 March 2008 by IvoDinov (talk | contribs)
Jump to: navigation, search

General Advance-Placement (AP) Statistics Curriculum - Multinomial Random Variables and Experiments

The multinomial experiments (and multinomial distribtuions) directly extend the their bi-nomial counterparts.

  • Examples of Multinomial experiments
    • Rolling a hexagonal Die 5 times: Where the outcome space is the colection of 5-tuples, where each element is a value such that\[1\leq value\leq 6\].
  • The Multinomial random variable (RV): Mathematically, a (k) multinomial trial is modeled by a random variable
\(X(outcome) = \begin{cases}x_o,\\ x_1,\\ \cdots,\\ x_k.\end{cases}\)

If \(p_i=P(X=x_i)\), then:

expected value of X, \(E[X]=\sum_{i=1}^k{x_i\times p_i}\).
standard deviation of X, \(SD[X]=\sqrt{\sum_{i=1}^k{(x_i-E[X])^2\times p_i}}\).

Synergies between Binomial and Multinomial processes/probabilities/coefficients

  • The Binomial vs. Multinomial Coefficients

\[{n\choose i}=\frac{n!}{k!(n-k)!}\]

\[{n\choose i_1,i_2,\cdots, i_k}= \frac{n!}{i_1! i_2! \cdots i_k!}\]

  • The Binomial vs. Multinomial Formulas

\[(a+b)^n = \sum_{i=1}^n{{n\choose i}a^1 \times b^{n-i}}\] \[(a_1+a_2+\cdots +a_k)^n = \sum_{i_1+i_2\cdots +i_k=n}^n{ {n\choose i_1,i_2,\cdots, i_k} a_1^{i_1} \times a_2^{i_2} \times \cdots \times a_k^{i_k}}\]

  • The Binomial vs. Multinomial Probabilities

\[p=P(X=r)={n\choose i}p^r(1-p)^{n-r}, \forall 0\leq r \leq n\] \[p=P(X_1=r_1 \cap X_1=r_1 \cap \cdots \cap X_k=r_k | r_1+r_2+\cdots+r_k=n)={n\choose i_1,i_2,\cdots, i_k}p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k}, \forall r_1+r_2+\cdots+r_k=n\]


Example

Suppose we study N independent trials with results falling in one of k possible categories labeled \(1,2, cdots, k\). Let \(p_i\) be the probability of a trial resulting in the \(i^{th}\) category, where \(p_1+p_2+\cdots++p_k =1\). Let \(N_i\) be the number of trials resulting in the \(i^{th}\) category, where \(N_1+N_2+\cdots++N_k = N\).

For instance, suppose we have 9 people arriving at a meeting according to the following information:

P(by Air) = 0.4, P(by Bus) = 0.2, P(by Automobile) = 0.3, P(by Train) = 0.1
  • Compute the following probabilities
P(3 by Air, 3 by Bus, 1 by Auto, 2 by Train) = ?
P(2 by air) = ?


SOCR Multinomial Examples


References




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif