Formulas
Revision as of 16:25, 22 April 2010 by John guojun (talk | contribs) (→Probability Density Functions (PDFs))
Probability Density Functions (PDFs)
- Standard Normal PDFf(x)= {e^{-x^2} \over \sqrt{2 \pi}}
- General Normal PDFf(x)= {e^{{-(x-\mu)^2} \over 2\sigma^2} \over \sqrt{2 \pi\sigma^2}}
- Chi-Square PDF\frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}\,
- Gamma PDFx^{k-1} \frac{\exp{\left(-x/\theta\right)}}{\Gamma(k)\,\theta^k}\,\!
- Beta PDF \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\, x^{\alpha-1}(1-x)^{\beta-1}\!
- Student's T PDF\frac{\Gamma(\frac{\nu+1}{2})} {\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \left(1+\frac{x^2}{\nu} \right)^{-(\frac{\nu+1}{2})}\!
- Poisson PDF\frac{e^{-\lambda} \lambda^k}{k!}\!
- Chi PDF\frac{2^{1-k/2}x^{k-1}e^{-x^2/2}}{\Gamma(k/2)}
- Cauchy PDF\frac{1}{\pi\gamma \left[1 + \left(\frac{x-x_0}{\gamma}\right)^2\right]}
- Exponential PDF \lambda e^{-\lambda x},\; x \ge 0
- F Distribution PDF \frac {(\frac {d_1 x}{d_1 x + d_2})^{ d_1/2} ( 1 - \frac {d_1 x} {d_1 x + d2}) ^ {d_2/2}} { xB(d_1/2 , d_2/2) }
- Bernoulli PMF f(k;p) \begin{cases} \mbox{p if k = 1,} \\ \mbox{1 - p if k = 0,} \\ \mbox{0 otherwise} \end{cases}
- Binomial PMF \begin{pmatrix} n \\ k \end{pmatrix} p^k (1-p)^{n-k}
- Multinomial PMFf(x_1, x_2, \cdots, x_k)={n\choose x_1,x_2,\cdots, x_k}p_1^{x_1}p_2^{x_2}\cdots p_k^{x_k}, where x_1+x_2+\cdots+x_k=n, p_1+p_2+\cdots+p_k=1, and 0 \le x_i \le n, 0 \le p_i \le 1.
- Negative Binomial PMF \begin{pmatrix} k + r - 1 \\ k \end{pmatrix} p^r(1-p)^k
- Negative-Multinomial Binomial PMF P(k_o, \cdots, k_r) = \Gamma(k_o + \sum_{i=1}^r{k_i}) \frac{p_o^{k_o}}{\Gamma(k_o)} \prod_{i=1}^r{\frac{p_i^{k_i}}{k_i!}}
- Geometric PMF \begin{pmatrix} 1-p \end{pmatrix} ^{k-1}p
- Erlang PDF \frac {\lambda x^{k-1}e^{-\lambda x}} {(k-1)!}
- Laplace PDF \frac {1}{2b} \exp (- \frac{|x-\mu|}{b})
- Continuous Uniform PDF f(x) = \begin{cases} \frac{1}{b-a} \mbox{ for } a \le x \le b \\ 0 \mbox{ for } x < a \mbox{ or } x > b \end{cases}
- Discrete Uniform PMF f(x) = \begin{cases} 1/n \mbox{ for } a \le x \le b, \\ 0 \mbox{ otherwise} \end{cases}
- Logarithmic PDF f(k) = \frac{-1}{ln(1-p)} \frac{p^k}{k}
- Logistic PDF f(x;u,s) = \frac{e^{-(x-\mu)/s}} {s(1+e^{-(x-\mu)/s})^2}
- Logistic-Exponential PDF f(x;\beta) = \frac { \beta e^x(e^x - 1)^{\beta-1}} {(1+(e^x-1)^\beta))^2} \mbox{ }\mbox{ }x, \beta > 0
- Power Function PDF f(x) = \frac {\alpha(x-a)^{\alpha-1}} {(b-a)^\alpha}
- Benford's Law P(d) = \log_b(d + 1)- \log_b(d) = \log_b(\frac{d + 1}{d})
- Pareto PDF \frac {kx^k_m} {x^{k+1}}
- Non-Central Student T PDF f(t)=\frac{\nu^{\nu/2}e^{-\nu\mu^2/2(t^2+\nu)}} {\sqrt{\pi}\Gamma(\nu/2)2^{(\nu-1)/2}(t^2+\nu)^{(\nu+1)/2}} \times\int\limits_0^\infty x^\nu\exp\left[-\frac{1}{2}\left(x-\frac{\mu t}{\sqrt{t^2+\nu}}\right)^2\right]dx
- ArcSine PDF f(x) = \frac{1}{\pi \sqrt{x(1-x)}}
- Circle PDF f(x)={2\sqrt{r^2 - x^2}\over \pi r^2 }, \forall x \in [-r , r]
- U-Quadratic PDF\alpha \left ( x - \beta \right )^2
- Standard Uniform PDFU(0,1) = f(x) = \begin{cases} {1} \mbox{ for } 0 \le x \le 1 \\ 0 \mbox{ for } x < 0 \mbox{ or } x > 1 \end{cases}
- Zipf\frac{1/(k+q)^s}{H_{N,s}}
- Inverse Gamma\frac{\beta^\alpha}{\Gamma(\alpha)} x^{-\alpha - 1} \exp \left(\frac{-\beta}{x}\right)
- Fisher-Tippett\frac{z\,e^{-z}}{\beta}\!
where z = e^{-\frac{x-\mu}{\beta}}\! - Gumbelf(x) = e^{-x} e^{-e^{-x}}.
- HyperGeometric{{{m \choose k} {{N-m} \choose {n-k}}}\over {N \choose n}}
- Log-Normal\frac{1}{x\sigma\sqrt{2\pi}}\exp\left[-\frac{\left(\ln(x)-\mu\right)^2}{2\sigma^2}\right]
- Gilbrats\frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{\left(\ln(x)\right)^2}{2\sigma^2}\right]
- Hyperbolic Secant\frac12 \; \operatorname{sech}\!\left(\frac{\pi}{2}\,x\right)\!
- Gompertzb e^{-bx} e^{-\eta e^{-bx}}\left[1 + \eta\left(1 - e^{-bx}\right)\right]
- Standard Cauchy f(x; 0,1) = \frac{1}{\pi (1 + x^2)}. \!
- Rectangular f(x)=\frac{1}{n+1}.(x=0,1,...,n)\!
- Beta-Binomial f(x)=\frac{\Gamma(x+a)\Gamma(n-x+b)\Gamma(a+b)\Gamma(n+2)}{(n+1)\Gamma(a+b+n)\Gamma(a)\Gamma(b)\Gamma(x+1)\Gamma(n-x+1)}.(x=0,1,...,n)\!
- Negative Hypergeometric f(x)=\frac{\begin{pmatrix} n_1+x-1 \\ x \end{pmatrix} \begin{pmatrix} n_3-n_1+n_2-x-1 \\ n_2-x \end{pmatrix}}{\begin{pmatrix} n_3+n_2-1 \\ n_2 \end{pmatrix}}. (x=max(0,n_1+n_2-n_3),...,n_2)\!
- Standard Power f(x; \beta) = \beta x^{\beta - 1} \!
- Power_Series f(x; c; A(c)) = a(x) c^x / A(c). (x=(0,1,...), c>0, A(c)=\sum_{x}a(x) c^x) \!
- Zeta f(x)=\frac{1}{x^a \sum_{i=1}^{\infty}(\frac{1}{i})^a}. (x=1,2,...) \!
- Logarithm f(x)=\frac{-(1-c)^x}{x\log c}. (x=1,2,..., 0<c<1) \!
- Beta_Pascal f(x; a, b, n) = \binom{n-1+x}{x} \frac{B(n+a, b+x)}{B(a,b)}. (x=(0,1,...); a+b=n) \!
- Gamma_Poisson f(x; \alpha, \beta) = \frac{\Gamma(x+\beta) \alpha^x}{\Gamma(\beta) (1+\alpha)^{\beta+x} x!}.(x=(0,1,...); \alpha>0; \beta>0) \!
- Pascal f(x; p, n) = \binom{n-1+x}{x} p^n (1-p)^x. (x=(0,1,...,n); 0 \leq p \leq 1)\!
- Polya f(x; n, p, \beta) = \binom{n}{x} \frac{\prod_{j=0}^{x-1}(p+j\beta) \prod_{k=0}^{n-x-1}(1-p+k\beta)}{\prod_{i=0}^{n-1}(1+i\beta)}. (x=\{0,1,...,n\}) \!
- Normal-Gamma f(x, \tau; \mu, \lambda,\alpha,\beta) = \frac{\beta^\alpha \sqrt(\lambda)}{\Gamma(\alpha) \sqrt(2 \pi)} \tau^{\alpha-1/2} exp(-\beta \tau) exp(-\frac{\lambda \tau (x-\mu)^2}{2}).(\tau>0) \!
- Discrete_Weibull f(x; p, \beta) = (1-p)^{x^\beta}-(1-p)^{(x+1)^\beta}. (x=\{0,1,...\}) \!
- Log Gamma f(x)=[1/ \alpha^\beta \Gamma(\beta)]e^{\beta x}e^{-e^x/a}. (-\infty<x<\infty) \!
- Generalized Gamma f(x)=\frac{\gamma}{\alpha^{\gamma \beta}\Gamma(\beta)}x^{\gamma \beta-1}e^{-(x/\alpha)^\gamma}. (x>0) \!
- Noncentral-Beta f(x; \beta, \gamma, \delta) = \sum_{i=0}^{\infty}\frac{\Gamma(i+\beta+\gamma)}{\Gamma(\gamma) \Gamma(i+\beta)} \frac{exp(-\delta/2)}{i!} (\delta/2)^i x^{i+\beta-1} (1-x)^{\gamma-1}. (0 \leq x \leq 1). \!
- Inverse Gausian f(x)=\sqrt{\frac{\lambda}{2\pi x^3}}e^{-\frac{\lambda}{2\mu^2 x}(x-\mu)^2}. (x>0) \!
- Noncentral_chi-square f(x; n,\delta) = \sum_{k=0}^{\infty}\ frac{exp(-\delta/2) (\delta/2)^k}{k!} \frac{exp(-x/2) x^{(n+2k)/2-1}}{2^{(n+2k)/2} \Gamma(\frac{n+2k}{2})}. \!
- Standard Wald f(x)=\sqrt{\frac{\lambda}{2\pi x^3}}e^{-\frac{\lambda}{2x}(x-1)^2}. (x>0)\!
- Inverted Beta f(x)=\frac{x^{\beta-1}(1+x)^{-\beta-\gamma}}{B(\beta,\gamma)}. (x>0, \beta>1, \gamma>1) \!
Transformations
- Standard Normal to General Normal Transformation\mu+\sigma\times X
- General Normal to Standard Normal TransformationX-\mu \over \sigma
- Standard Normal to Chi Transformation|\ X |
- Standard Normal to Chi-Square Transformation\sum_{k=1}^{\nu} X_k^2
- Gamma to General Normal Transformation\mu=\alpha\times\beta;\sigma^2=\alpha^2\times\beta;\beta\longrightarrow\infty
- Gamma to Exponential Transformation: The special case of {\Gamma}(k=1, \theta=1/\lambda)\, is equivalent to exponential Exp(\lambda).
- Gamma to Beta TransformationX_1 \over X_1 + X_2.
- Student's T to Standard Normal Transformationn\longrightarrow\infty
- Student's T to Cauchy Transformationn=1 \
- Cauchy to General Cauchy Transformationa + \alpha\times X
- General Cauchy to Cauchy Transformationa=0; \alpha=1 \
- Fisher's F to Student's T\sqrt X
- Student's T to Fisher's F X^2
- Bernoulli to Binomial Transformation \sum X_i (iid)
- Binomial to Bernoulli Transformation\begin{pmatrix} n = 1 \end{pmatrix}
- Binomial to General Normal Transformation \begin{vmatrix} \mu = np \\ \sigma^2 = np(1-p) \\n \rightarrow \infty \end{vmatrix}
- Binomial to Poisson Transformation \begin{vmatrix}\mu = np \\ n \rightarrow \infty \end{vmatrix}
- Multinomial to Binomial Transformation \begin{vmatrix} k=2 \end{vmatrix}
- Negative Binomial to Geometric Transformation \begin{pmatrix} r = 1 \end{pmatrix}
- Erlang to Exponential Transformation \begin{pmatrix} k = 1 \end{pmatrix}
- Erlang to Chi-Square Transformation \begin{pmatrix} \alpha = 2 \end{pmatrix}
- Laplace to Exponential Transformation\begin{pmatrix} \begin{vmatrix} X \end{vmatrix} \\ \alpha_1 = \alpha_2 \end{pmatrix}
- Exponential to Laplace Transformation x_1 - x_2 \
- Beta to Arcsine Transformation \alpha = \beta = \frac{1}{2}
- Noncentral Student's T to Normal Transformation Z=\lim_{\nu\to\infty}T
- Noncentral Student's T to Student's T Transformation \mu = 0 \
- Standard Uniform to Pareto Transformation \lambda X ^{-1/K} \
- Standard Uniform to Benford Transformation 10^X \
- Standard Uniform to Exponential Transformation n(1-X_{(n)}), n -> \infty
- Standard Uniform to Log Logistic Transformation \frac{1}{\lambda}(\frac{1-X}{X})^{1/k}
- Standard Uniform to Standard Triangular Transformation X_1 - X_2
- Standard Uniform to Logistic Exponential Transformation \frac{log[1+(\frac{X}{1-X})^{1/K}]}{\lambda}
- Standard Uniform to Beta Transformation: If X has a standard uniform distribution, Y = 1 - X^{1/n} \ has a beta distribution
- Beta to Standard Uniform Transformation \beta = \gamma = 1
- Continuous Uniform to Standard Uniform Transformation a = 0, b = 1 \
- Pareto to Exponential log(X/\lambda) \
- Logistic Exponential to Exponential \beta = 1 \
- Zipf to Discrete Uniform a = 0, a = 1, b = n \
- Discrete Uniform to Rectangular a = 0, b = n \
- Poisson to Normal \sigma ^2 = \mu , \mu \to \infty
- Binomial to Poisson \mu = np, \mu \to \infty
- Gamma to Inverted Gamma \frac{1}{X}
- Fisher-Tippett to Gumbel \mu = 0, \beta = 1 \
- Hypergeometric to Binomial p = \frac{n_1}{n_3}, n = n_2, n_3, n \to \infty \
- Log-Normal to Normal log(X) \
- Normal to Log-Normale^X \
- Log-Normal to Gibrat's \mu = 0, x = 1 \
- Cauchy to Standard Cauchy \gamma = 1, x_0 = 0 \
- Standard Cauchy to Cauchy x_0 + \gamma X \
- Standard Cauchy to Hyperbolic Secant \frac{log|x|}{\pi} \
- Beta to Standard Power \alpha=\beta, \beta=1 \
- SOCR Home page: http://www.socr.ucla.edu
Translate this page: