Scientific Methods for Health Sciences

From SOCR
Revision as of 13:02, 28 July 2014 by Dinov (talk | contribs) (Clinical vs. Statistical Significance)
Jump to: navigation, search

The Scientific Methods for Health Sciences EBook is still under active development. It is expected to be complete by Sept 01, 2014, when this banner will be removed.

Contents

SOCR Wiki: Scientific Methods for Health Sciences

Scientific Methods for Health Sciences EBook


Electronic book (EBook) on Scientific Methods for Health Sciences (coming up ...)

Preface

The Scientific Methods for Health Sciences (SMHS) EBook is designed to support a 4-course training of scientific methods for graduate students in the health sciences.

Format

Follow the instructions in this page to expand, revise or improve the materials in this EBook.

Learning and Instructional Usage

This section describes the means of traversing, searching, discovering and utilizing the SMHS EBook resources in both formal and informal learning setting.

Copyrights

The SMHS EBook is a freely and openly accessible electronic book developed by SOCR and the general community.

Chapter I: Fundamentals

Exploratory Data Analysis, Plots and Charts

Review of data types, exploratory data analyses and graphical representation of information.

Ubiquitous Variation

There are many ways to quantify variability, which is present in all natural processes.

Parametric Inference

Foundations of parametric (model-based) statistical inference.

Probability Theory

Random variables, stochastic processes, and events are the core concepts necessary to define likelihoods of certain outcomes or results to be observed. We define event manipulations and present the fundamental principles of probability theory including conditional probability, total and Bayesian probability laws, and various combinatorial ideas.

Odds Ratio/Relative Risk

The relative risk, RR, (a measure of dependence comparing two probabilities in terms of their ratio) and the odds ratio, OR, (the fraction of one probability and its complement) are widely applicable in many healthcare studies.

Probability Distributions

Probability distributions are mathematical models for processes that we observe in nature. Although there are different types of distributions, they have common features and properties that make them useful in various scientific applications.

Resampling and Simulation

Resampling is a technique for estimation of sample statistics (e.g., medians, percentiles) by using subsets of available data or by randomly drawing replacement data. Simulation is a computational technique addressing specific imitations of what’s happening in the real world or system over time without awaiting it to happen by chance.

Design of Experiments

Design of experiments (DOE) is a technique for systematic and rigorous problem solving that applies data collection principles to ensure the generation of valid, supportable and reproducible conclusions.

Intro to Epidemiology

Epidemiology is the study of the distribution and determinants of disease frequency in human populations. This section presents the basic epidemiology concepts. More advanced epidemiological methodologies are discussed in the next chapter.

Experiments vs. Observational Studies

Experimental and observational studies have different characteristics and are useful in complementary investigations of association and causality.

Estimation

Estimation is a method of using sample data to approximate the values of specific population parameters of interest like population mean, variability or 97th percentile. Estimated parameters are expected to be interpretable, accurate and optimal, in some form.

Hypothesis Testing

Hypothesis testing is a quantitative decision-making technique for examining the characteristics (e.g., centrality, span) of populations or processes based on observed experimental data.

Statistical Power, Sensitivity and Specificity

The fundamental concepts of type I (false-positive) and type II (false-negative) errors lead to the important study-specific notions of statistical power, sample size, effect size, sensitivity and specificity.

Data Management

All modern data-driven scientific inquiries demand deep understanding of tabular, ASCII, binary, streaming, and cloud data management, processing and interpretation.

Bias and Precision

Bias and precision are two important and complementary characteristics of estimated parameters that quantify the accuracy and variability of approximated quantities.

Association and Causality

An association is a relationship between two, or more, measured quantities that renders them statistically dependent so that the occurrence of one does affect the probability of the other. A causal relation is a specific type of association between an event (the cause) and a second event (the effect) that is considered to be a consequence of the first event.

Rate-of-change

Rate of change is a technical indicator describing the rate in which one quantity changes in relation to another quantity.

Clinical vs. Statistical Significance

Statistical significance addresses the question of whether or not the results of a statistical test meet an accepted quantitative criterion, whereas clinical significance is answers the question of whether the observed difference between two treatments (e.g., new and old therapy) found in the study large enough to alter the clinical practice.

Correction for Multiple Testing

Multiple testing refers to analytical protocols involving testing of several (typically more then two) hypotheses. Multiple testing studies require correction for type I (false-positive rate), which can be done using Bonferroni's method, Tukey’s procedure, family-wise error rate (FWER), or false discovery rate (FDR).


Chapter II: Applied Inference

Epidemiology

Correlation and Regression (ρ and slope inference, 1-2 samples)

ROC Curve

ANOVA

Non-parametric inference

Instrument Performance Evaluation: Cronbach's α

Measurement Reliability and Validity

Survival Analysis

Decision Theory

CLT/LLNs – limiting results and misconceptions

Association Tests

Bayesian Inference

PCA/ICA/Factor Analysis

Point/Interval Estimation (CI) – MoM, MLE

Study/Research Critiques

Common mistakes and misconceptions in using probability and statistics, identifying potential assumption violations, and avoiding them

Chapter III: Linear Modeling

Multiple Linear Regression (MLR)

Generalized Linear Modeling (GLM)

Analysis of Covariance (ANCOVA)

First, see the ANOVA section above.

Multivariate Analysis of Variance (MANOVA)

Multivariate Analysis of Covariance (MANCOVA)

Repeated measures Analysis of Variance (rANOVA)

Partial Correlation

Time Series Analysis

Fixed, Randomized and Mixed Effect Models

Hierarchical Linear Models (HLM)

Multi-Model Inference

Mixture Modeling

Surveys

Longitudinal Data

Generalized Estimating Equations (GEE) Models

Model Fitting and Model Quality (KS-test)

Chapter IV: Special Topics

Scientific Visualization

PCOR/CER methods Heterogeneity of Treatment Effects

Big-Data/Big-Science

Missing data

Genotype-Environment-Phenotype associations

Medical imaging

Data Networks

Adaptive Clinical Trials

Databases/registries

Meta-analyses

Causality/Causal Inference, SEM

Classification methods

Time-series analysis

Scientific Validation

Geographic Information Systems (GIS)

Rasch measurement model/analysis

MCMC sampling for Bayesian inference

Network Analysis




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif